K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2017

Giả sử a,b,c đều không chia hết cho 3 thì  phải chia 3 dư 1

thay vào  chia 3 dư 2 còn  chia 3 dư 1 (loại)

Do đó a,b,c phải tồn tại một số chia hết cho 3 ,  

Lại chúng minh tương tự để đc một trong 3 số chia hết cho 4 và 5

Rồi suy ra abc chia hêt cho 3.4.5 = 60

16 tháng 1 2019

Giả sử a,b,c đều không chia hết cho 3 thì  phải chia 3 dư 1

thay vào  chia 3 dư 2 còn  chia 3 dư 1 (loại)

Do đó a,b,c phải tồn tại một số chia hết cho 3 ,  

Lại chúng minh tương tự để đc một trong 3 số chia hết cho 4 và 5

 suy ra abc chia hêt cho 3.4.5 = 60

1 tháng 2 2021

Dễ chứng minh được với 1 số chính phương khi chia cho 7 ta chỉ có các khả năng dư: 0 , 1 , 2 , 4

Khi đó \(a^2+b^2\)  chia 7 sẽ có các khả năng dư sau: 0 ; 1 ; 2 ; 3 ; 4 ; 6 ; 7

Mà theo đề bài \(a^2+b^2\) chia hết cho 7 nên sẽ chỉ duy nhất 1 khả năng là \(\hept{\begin{cases}a^2⋮7\\b^2⋮7\end{cases}}\)

Vì 7 là số nguyên tố => a và b đều chia hết cho 7

=> đpcm

14 tháng 10 2020

1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1

Thay vào ab=cd được ka1b=bc1d nên

a1b=c1d  (1)

Ta có: a1\(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m =  c1d nên a1m=d

Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)

\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)

Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)

14 tháng 10 2020

2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.

Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.

Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)

b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)

Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......

7 tháng 1 2021

\(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)

\(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)

\(\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)

\(\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

<=>b(c+d)(d+a)+d(a+b)(b+c)=0 (vì c≠a)

<=>abc-acd+bd2-b2d=0

<=> (b-d)(ac-bd)=0 <=> ac - bd =0 (vì b≠d) <=> ac = bd

Vậy abcd =(ac)(bd)=(ac)2

6 tháng 5 2016

Nhận thấy một số chính phương khi chia cho 7 có các số dư: 0,1,2,4. Xét các trường hợp:

+) Nếu một trong 2 số chia hết cho 7 thì hiển nhiên số còn lại cũng chia hết cho 7.

+) Nếu cả 2 số đều không chia hết cho 7, ta thấy trong 3 số 1,2,4 không có 2 số nào có tổng chia hết cho 7 => \(a^2+b^2\) không chia hết cho 7.

Vậy ta có đpcm.

8 tháng 10 2019

a) \(a,b>0\Rightarrow a^3-b^3< a^3+b^3\)

Mà \(a^3+b^3=a-b\)

\(\Rightarrow a^3-b^3< a-b\)

\(\Rightarrow\frac{a^3-b^3}{a-b}< 1\)

\(\Leftrightarrow\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}< 1\)

\(\Leftrightarrow a^2+ab+b^2< 1\)

\(\Rightarrow a^2+b^2< 0\)(Vì a,b > 0)

b) Câu hỏi của ta là ai - Toán lớp 7 - Học toán với OnlineMath

15 tháng 2 2021

thử bài bất :D 

Ta có: \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{a}{2}+\dfrac{b+c}{4}\ge5\sqrt[5]{\dfrac{1}{a^3\left(b+c\right)}.\dfrac{a^3}{2^3}.\dfrac{\left(b+c\right)}{4}}=\dfrac{5}{2}\) ( AM-GM cho 5 số ) (*)

Hoàn toàn tương tự: 

\(\dfrac{1}{b^3\left(c+a\right)}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{b}{2}+\dfrac{c+a}{4}\ge5\sqrt[5]{\dfrac{1}{b^3\left(c+a\right)}.\dfrac{b^3}{2^3}.\dfrac{\left(c+a\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (**)

\(\dfrac{1}{c^3\left(a+b\right)}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{c}{2}+\dfrac{a+b}{4}\ge5\sqrt[5]{\dfrac{1}{c^3\left(a+b\right)}.\dfrac{c^3}{2^3}.\dfrac{\left(a+b\right)}{4}}=\dfrac{5}{2}\) (AM-GM cho 5 số) (***)

Cộng (*),(**),(***) vế theo vế ta được:

\(P+\dfrac{3}{2}\left(a+b+c\right)+\dfrac{2\left(a+b+c\right)}{4}\ge\dfrac{15}{2}\) \(\Leftrightarrow P+2\left(a+b+c\right)\ge\dfrac{15}{2}\)

Mà: \(a+b+c\ge3\sqrt[3]{abc}=3\) ( AM-GM 3 số )

Từ đây: \(\Rightarrow P\ge\dfrac{15}{2}-2\left(a+b+c\right)=\dfrac{3}{2}\)

Dấu "=" xảy ra khi a=b=c=1

 

 

 

15 tháng 2 2021

1. \(a^3+b^3+c^3+d^3=2\left(c^3-d^3\right)+c^3+d^3=3c^3-d^3\) :D