Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : a^3+b^3+c^3=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)+3.a.b.c=3.a.b.c
=(a+b+c).(a^2+b^2+c^2-a.b-b.c-a.c)=0
Ta thấy:a,b,c là số dương nên a+b+c khác 0 suy ra (a^2+b^2+c^2-a.b-b.c-a.c) =0 nên a=b=c
Vậy a=b=c
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2+ac+bc+c^2-3ab\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\left(a+b+c>0\right)\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}\Rightarrow a=b=c}\)
a) Ta có:
(a + b)2 >= 0 => a2 + b2 >= -2ab
(a - 1)2 >= 0 => a2 + 1 >= 2a
(b - 1)2 >= 0 => b2 + 1 >= 2b
Cộng từng vế ta được: 2a2 +2b2 +2 >= -2ab + 2a +2b => a2 + b2 + 1 >= -ab + a + b
Dấu "=" xảy ra khi a= - b; a = 1; b = 1 không đạt được nên không xảy ra dấu bằng do đó:
a2 + b2 + 1 > -ab + a + b .đpcm.
b) a + b + c = 0 => a + b = -c => (a + b)3 = -c3 => a3 + 3a2b +3 ab2 + b3 = -c3
=> a3 + b3 + c3 = -3ab(a + b) (*)
Mà a + b + c = 0 => a + b = -c
=> (*) <=> a3 + b3 + c3 = 3abc .đpcm.
Ta có:
\(a^3+b^3+c^3-3abc\)
\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left(2a^2+2b^2+2c^2-2ab-2ac-2bc\right)\)
\(=\frac{1}{2}\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]\) (1)
Mà \(a+b+c=0\)
\(\left(1\right)\Rightarrow\frac{1}{2}.0.\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)
Vậy: nếu \(a+b+c=0\) thì \(a^3+b^3+c^3-3abc=0\)
Chúc bạn học tốt và tíck cho mìk vs nha bùi thị thu hương!
a2+b2+c2=ab+ac+bc
<=>2a2+2b2+2c2=2ab+2ac+2bc
<=>a2-2ab+b2+a2-2ac+c2+b2-2bc=0
<=>(a-b)2+(a-c)2+(b-c)2=0
<=>a-b=0 và a-c=0 và b-c=0
<=>a=b=c
a) Ta có: (a + b + c + d)(a - b - c +d )=( (a + d) + (b + c) )( (a + d) - (b + c) )
=(a + d )2 - (b +c )2 (1)
(a - b + c - d)(a + b - c - d)=(a - d)2 - (b - c)2 (2)
Từ (1) và (2) => a2 + 2ad + d2 - b2 - 2bc - c2=a2 - 2ad + d2 - b2 + 2bc - c2
4ad=4bc => ad=bc <=> \(\frac{a}{c}=\frac{b}{d}\) (đpcm)
Ta dùng cách chứng minh ngược :
Nếu \(a=b=c\) thì \(a^3=b^3=c^3=abc\)
\(\Rightarrow a^3+a^3+a^3=abc+abc+abc\)
\(\Rightarrow a^3+b^3+c^3=3abc\)