K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2016

\(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

Có:

  • \(\frac{ab+ad}{b\left(b+d\right)}< \frac{ab+bc}{b\left(b+d\right)}\)

\(\Rightarrow\frac{a\left(b+d\right)}{b\left(b+d\right)}< \frac{b\left(a+c\right)}{b\left(b+d\right)}\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

  • \(\frac{ad+cd}{d\left(b+d\right)}< \frac{bc+cd}{d\left(b+d\right)}\)

\(\Rightarrow\frac{d\left(a+c\right)}{d\left(b+d\right)}< \frac{c\left(b+d\right)}{d\left(b+d\right)}\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

\(\left(1\right)\left(2\right)\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

21 tháng 6 2017

a) phải là a.d<b.c

 chứ ko phải a,d<b,c đâu

19 tháng 8 2015

a) Ta có a / b < c / d khi ad < bc                                                                  (1)

Thêm ab vào 2 vế của (1), ta có:   ad+ab <bc+ab

                                                 a(b+d) < b(a+c) suy ra a / b<(a+c) / (b+c)    (2)

Thêm cd vào 2 vế của (1), ta có:   ad +cd<bc+cd

                                                 d(a+c) <c(b+d) suy ra (a+c) / (b+d)<c / d     (3)

Từ (2) và (3) suy ra: a / b < (a+c) / (b+d) < c / d

14 tháng 10 2017
ngu moi hoi
17 tháng 8 2015

mình đang hỏi bài này mà

20 tháng 8 2016

Vì (a-b) đối (b-a)

(c-d) đối (d-c)

(e-f) đối (f-e)

=> (a-b)(c-d)(e-f) đối (b-a)(d-c)(f-e)

=> (a-b)(c-d)(e-f).(-1)=(b-a)(d-c)(f-e)

Chúc bạn học giỏi nha!!!