K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 6 2019

Lời giải:

Xét:

\(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2\)

\(=(a^4+b^4+2a^2b^2)+c^4-2c^2(b^2+a^2)-4a^2b^2\)

\(=(a^2+b^2)^2+(c^2)^2-2c^2(a^2+b^2)-(2ab)^2\)

\(=(a^2+b^2-c^2)^2-(2ab)^2=(a^2+b^2-c^2-2ab)(a^2+b^2-c^2+2ab)\)

\(=[(a-b)^2-c^2][(a+b)^2-c^2]\)

\(=(a-b-c)(a-b+c)(a+b-c)(a+b+c)\)

\(\Rightarrow 2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4=(b+c-a)(a-b+c)(a+b-c)(a+b+c)\)

Vì $a,b,c$ là 3 cạnh tam giác nên $b+c-a,a-b+c,a+b-c>0$ theo BĐT tam giác. Mặt khác hiển nhiên $a+b+c>0$

Do đó:

\(2a^2b^2+2b^2c^2+2a^2c^2-a^4-b^4-c^4=(b+c-a)(a-b+c)(a+b-c)(a+b+c)>0\)

Ta có đpcm.

27 tháng 12 2017

ta có:2a2b2+2a2c2+2c2b2-((a+b+c)4+2a^2b^2+2a^2c^2+2c^2b^2))

=(a^2+b^2+c^2)2

vì a,b,cla tổng ba cạnh của 1 tam giác nên a+b+c lớn hơn 0

suy ra (a+b+c)4lổn hơn 0 hay A lớn hơn ở

8 tháng 4 2017

oh my dog toán lớp 8 đây á

mik làm đc hình như mỗi câu a thôi thì phải

8 tháng 4 2017

có câu a là lớp 8 có khả năng chứng minh mà hơi khó

19 tháng 9 2016

Biết a,b,c là 3 cạnh của 1 tam giác.CMR: 2a2b2+2a2c2+2b2c2-a4-b4-c4>0

Biết a,b,c là 3 cạnh của 1 tam giác.CMR: 2a2b2+2a2c2+2b2c2-a4-b4-c4>0

Biết a,b,c là 3 cạnh của 1 tam giác.CMR: 2a2b2+2a2c2+2b2c2-a4-b4-c4>0