K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2016

Áp dụng bất đẳng thức Bunyakovsky cho hai bộ số thực  \(\left(1^2;2^2\right)\)  và  \(\left(a^2;4b^2\right)\), ta có:

\(\left(1^2+2^2\right)\left(a^2+4b^2\right)\ge\left(a+4b\right)^2=1\)  (do  \(a+4b=1\))

\(\Leftrightarrow\)  \(5\left(a^2+4b^2\right)\ge1\)

Kết luận: ...

7 tháng 5 2016

Áp dụng BĐT Bunhiacopxki với 2 dãy số x;2y và 1;2

Ta có: \(\left(x^2+4y^2\right)\left(1^2+2^2\right)\ge\left(x+4y\right)^2\)

\(<=>5\left(x^2+4y^2\right)\ge1^2=1\)

=> ĐPCM, dấu = xảy ra <=> \(\frac{x}{1}=\frac{2y}{2}<=>x=y\)

24 tháng 3 2017

Tớ ko biết làm, xin lỗi nhé!

AH
Akai Haruma
Giáo viên
19 tháng 10 2024

Lời giải:
Áp dụng BĐT Bunhiacopxky:

$(a^2+4b^2)(1+4)\geq (a+4b)^2$

$\Leftrightarrow 5(a^2+4b^2)\geq 1$

$\Leftrightarrow a^2+4b^2\geq \frac{1}{5}$

Ta có đpcm

Dấu "=" xảy ra khi $\frac{a}{1}=\frac{2b}{2}$

$\Leftrightarrow a=b$. Kết hợp với $a+4b=1\Rightarrow a=b=\frac{1}{5}$

14 tháng 10 2020
293882
24 tháng 3 2017

Bài 1:

Ta có: (2a-2b)2 lớn hơn hặc bằng 0

<=> 4a2-8ab+4b2 lớn hơn hoặc bằng 0

<=> 5a2-a2-8ab+20b2-16b2 lớn hơn hoặc bằng 0

<=> 5a2+20b2 lớn hơn hoặc bằng a2+8ab+16b

<=> 5(a2+4b2) lớn hơn hoặc bằng (a+4b)2

<=> 5(a2+4b2) lớn hơn hoặc bằng 1 [ Thay (a+4b)2 =1]

24 tháng 3 2017

3)

\(a=b+1\Leftrightarrow a+1>b+1\Leftrightarrow a>b+1-1\\ \Leftrightarrow a>b\)

4 tháng 7 2019

a) \(A=5-8x-x^2\)

        \(=-\left(x^2+8x-5\right)\)

        \(=-\left(x^2+2.x.4+4^2-16-5\right)\)

        \(=-\left[\left(x+4\right)^2-21\right]\)

        \(=-\left(x+4\right)^2+21\le21\)

       Dấu "=" khi x + 4 = 0 => x = -4

       Vậy GTLN của A là 21 khi x = -4

b) \(B=5-x^2+2x-4y^2-4y\)

       \(=-\left(x^2-2x+4y^2+4y-5\right)\)

       \(=-\left[x^2-2x+1+\left(2y\right)^2+2.2y.1+1-7\right]\)

      \(=-\left[\left(x-1\right)^2+\left(2y+1\right)^2\right]+7\le7\)

    Dấu "=" khi \(\hept{\begin{cases}x-1=0\\2y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=\frac{-1}{2}\end{cases}}}\)

   Vậy GTLN của B là 7 khi x = 1 và y = -1/2

c) Theo đề: \(a^2+b^2+c^2=ab+bc+ca\)

           \(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)

         \(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

          \(\Leftrightarrow a^2-2ab+b^2+b^2-2bc+c^2+c^2-2ca+a^2=0\)

         \(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

          \(\Rightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow}a=b=c}\)(ĐPCM)

d) \(a^2-2a+b^2+4b+4c^2-4c+6=0\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(\text{4c^2}-4c+1\right)=0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}a-1=0\\b+2=0\\2c-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=-2\\c=\frac{1}{2}\end{cases}}}\)

   Vậy nghiệm phương trình: a = 1; b = -2; c = 1/2

Chúc bạn học tốt ^_^

      

4 tháng 7 2019

sao ko ai giúp nhỉ ;(