Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3
Giả sử a và b đồng thời đều không chia hết cho 3
Vì a không chia hết cho 3 nên ⇒ a2 : 3 dư 1
vì b không chia hết cho b nên ⇒ b2 : 3 dư 1
⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)
Vậy a; b không thể đồng thời không chia hết cho ba
Giả sử a ⋮ 3; b không chia hết cho 3
a ⋮ 3 ⇒ a 2 ⋮ 3
Mà a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết)
Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra
Từ những lập luận trên ta có:
a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)
b) A=m3+3m2-m-3
=(m-1)(m2+m+1) +m(m-1) +2(m-1)(m+1)
=(m-1)(m2+m+1+m+2m+2)
=(m-1)(m2+4m+4-1)
=(m-1)[ (m+2)2-1 ]
=(m-1)(m+1)(m+3)
với m là số nguyên lẻ
=> m-1 là số chẵn(nếu gọi m là 2k-1 thì 2k-1-1=2k-2=2(k-1)(chẵn)
m+1 là số chẵn (tương tự 2k11+1=2k(chẵn)
m+3 là số chẵn (tương tự 2k-1+3=2k++2=2(k+2)(chẵn)
ta có:gọi m là 2k-1 thay vào A ta có:(với k là số nguyên bất kì)
A=(2k-2)2k(2k+2)
=(4k2-4)2k
=8k(k-1)(k+1)
k-1 ;'k và k+1 là 3 số nguyên liên tiếp
=> (k-1)k(k+1) sẽ chia hết cho 6 vì trong 3 số liên tiếp luôn có ít nhất 1 số chia hết cho 2 , 1 số chia hết cho 3
=> tích (k-1)k(k+1) luôn chia hết cho 6
=> A=8.(k-1)(k(k+1) luôn chia hết cho (8.6)=48
=> (m3+3m3-m-3) chia hết cho 48(đfcm)
ta có a2014 và a2016 có cùng số dư khi chia cho 2 và 3 nên a2014 và a2016 có cùng số dư khi chia cho 6.
ta có b2015 và b2017 có cùng số dư khi chia cho 2 và 3 nên b2015 và b2017 có cùng số dư khi chia cho 6.
ta có c2016 và c2018 có cùng số dư khi chia cho 2 và 3 nên c2016 và c2018 có cùng số dư khi chia cho 6.
do đó a2014 + b2015 + c2016 và a2016 + b2017 + c2018 có cùng số dư khi chia cho 6 hay a2014 + b2015 + c2016 chia hết cho 6 thì a2016 + b2017 + c2018 cũng chia hết cho 6.
Lời giải:
Đặt \(A=a^7+3b^7-2c\)
Ta có: \(\frac{5b+2c(4+c^6)}{a+b+c}=1\)
\(\Leftrightarrow 5b+2c(4+c^6)=a+b+c\)
\(\Leftrightarrow 4b+7c+2c^7=a\)
----------------------------------------
Ta có bổ đề sau: Với mọi số tự nhiên $n$ nào đó thì \(n^7\equiv n\pmod 7\)
Chứng minh :
Thật vậy.
Với \(n\equiv 0\pmod 7\) thì \(n^7\equiv 0\equiv n\pmod 7\)
Với \(n\not\equiv 0\pmod 7\) hay \((n,7)=1\). Áp dụng định lý Fermat nhỏ ta có:
\(n^6\equiv 1\pmod 7\Rightarrow n^7\equiv n\pmod 7\)
Ta có đpcm.
--------------------
Quay trở lại bài toán:
Áp dụng bổ đề trên ta có:
\(A=a^7+3b^7-2c\equiv a+3b-2c^7\pmod 7\)
\(\Leftrightarrow A\equiv 4b+7c+2c^7+3b-2c^7\pmod 7\)
\(\Leftrightarrow A\equiv 7b+7c\equiv 0\pmod 7\)
Hay \(A\vdots 7\)
Chứng minh hoàn tất.
\(2a^2+3ab+2b^2=2\left(a-b\right)^2+7ab....\) chia hết cho 7=> a-b chia hết cho 7
=> (a-b)(a+b) chia hết cho 7 hay a2-b2 chia hết cho 7.
sao từ a-b chia hết cho 7 lại suy r dc (a-b)(a+b) cũng thế v bn
1)a)Ta có:\(a^3-13a=a^3-a-12a=\left(a-1\right)a\left(a+1\right)-12a\)
Ta có:\(\left(a-1\right)a\left(a+1\right)⋮\)2 và 3;\(12a⋮6\)
Mà (2;3)=1\(\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)
\(\Rightarrow\left(a-1\right)a\left(a+1\right)-12a⋮6\left(đpcm\right)\)
b)Hình như đề sai
Lời giải:
Đặt biểu thức đã cho là $A$
$\bullet$ Chứng minh $A\vdots 5$
Ta nhớ đến tính chất quen thuộc là: Một số chính phương khi chia cho $5$ có dư là $0,1,4$
Do đó, với $a$ là số nguyên không chia hết cho $5$ thì $a^2$ chia $5$ dư $1$ hoặc $4$
Hay $a^2\equiv \pm 1\pmod 5$
$\Rightarrow a^4\equiv 1\pmod 5\Rightarrow a^4-1\equiv 0\pmod 5$
$\Rightarrow A=(a^4-1)(a^4+15a^2+1)\equiv 0\pmod 5$
Hay $A\vdots 5(*)$
----------------------
Chứng minh $A\vdots 7$
$A=(a^4-1)(a^4+a^2+1)+14a^2(a^4-1)$
$=(a^2+1)(a^6-1)+14a^2(a^4-1)$
Ta nhớ đến tính chất quen thuộc: Một số lập phương khi chia cho $7$ có dư $0,1,6$
Do đó, với $a$ là số không chia hết $7$ thì $a^3$ chia $7$ có thể dư $1,6$
Hay $a^3\equiv \pm 1\pmod 7$
$\Rightarrow a^6\equiv 1\pmod 7\Rightarrow a^6-1\equiv 0\pmod 7$
$\Rightarrow A=(a^2+1)(a^6-1)+14a^2(a^4-1)\equiv 0\pmod 7$
Hay $A\vdots 7(**)$
Từ $(*); (**)\Rightarrow A\vdots 35$
bài này dùng đồng dư nha bạn
mình nghĩ bạn chưa học đâu
thật ra mình cũng chưa học nhung nếu bạn thật sự tò mò hãy tra mạng nhé
ngu quá
Ta có: \(a^6-1=\left(a^3+1\right)\left(a^3-1\right)\)
\(=\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)\)
* a không chia hết cho 7 nên a có 6 dạng: 7k + 1; 7k + 2; 7k + 3; 7k + 4; 7k + 5; 7k + 6
+) a = 7k + 1
\(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)\)
\(=\left(a+1\right)\left(a^2-a+1\right)\left(7k+1-1\right)\left(a^2+a+1\right)\)
\(=7k\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)
+) a = 7k + 2
\(\Rightarrow a^2=\left(7k+2\right)^2=49k^2+28k+4\)
\(\Rightarrow a^2+a+1=\left(49k^2+28k+4+7k+2+1\right)\)
\(=49k^2+35k+7⋮7\)
Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)
+) a = 7k + 3
\(\Rightarrow a^2=\left(7k+3\right)^2=49k^2+42k+9\)
\(\Rightarrow a^2+a+1=\left(49k^2+42k+9-7k-3+1\right)\)
\(=49k^2+35k+7⋮7\)
Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)
+) a = 7k + 4
\(\Rightarrow a^2=\left(7k+4\right)^2=49k^2+56k+16\)
\(\Rightarrow a^2+a+1=\left(49k^2+56k+16+7k+4+1\right)\)
\(\Rightarrow a^2+a+1=\left(49k^2+63k+21\right)⋮7\)
Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)
+) a = 7k + 5
\(\Rightarrow a^2=\left(7k+5\right)^2=49k^2+70k+25\)
\(\Rightarrow a^2-a+1=\left(49k^2+70k+25-7k-5+1\right)\)
\(=\left(49k^2+63k+21\right)⋮7\)
Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)
+) a = 7k + 6
\(\Rightarrow a^2=\left(7k+6\right)^2=49k^2+84k+36\)
\(\Rightarrow a^2+a+1=\left(49k^2+84k+36+7k+5+1\right)\)
\(=49k^2+91k+42⋮7\)
Do đó \(\Rightarrow\left(a+1\right)\left(a^2-a+1\right)\left(a-1\right)\left(a^2+a+1\right)⋮7\)hay \(a^6-1⋮7\)
Vậy \(a^6-1⋮7\)với mọi a không là bội của 7