Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lớp 8 thì còn lằng nhằng lớp 10 quá đơn giản
\(x^2+y^2+z^2\ge\dfrac{\left(x+y+z\right)^2}{3}=\dfrac{1}{3}\)
(\(a^2\)+\(b^2\)).(\(x^2\)+\(y^2\))>= (ax+by)^2
<=> \(a^2\).\(x^2\)+\(a^2\).\(y^2\)+\(b^2\).\(x^2\)+\(b^2\).\(y^2\)>=\(a^2\).\(x^2\)+2axby+\(b^2\).\(y^2\)
<=> \(a^2\).\(y^2\)- 2aybx+\(b^2\).\(x^2\)>=0
<=> (ay-bx)^2>=0 (luôn đúng)
vậy(\(a^2\)+\(b^2\)).(\(x^2\)+\(y^2\))>=(ax+by)^2
(a2a2+b2b2).(x2x2+y2y2)>= (ax+by)^2
<=> a2a2.x2x2+a2a2.y2y2+b2b2.x2x2+b2b2.y2y2>=a2a2.x2x2+2axby+b2b2.y2y2
<=> a2a2.y2y2- 2aybx+b2b2.x
\(x^2-xy+y^2+1>0\)
\(\Leftrightarrow x^2-xy+\frac{1}{4}y^2+\frac{3}{4}y^2+1>0\)
\(\Leftrightarrow\left(x^2-xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2+1>0\)
\(\Leftrightarrow\left[x^2-2\cdot x\cdot\frac{1}{2}y+\left(\frac{1}{2}y\right)^2\right]+\frac{3}{4}y^2+1>0\)
\(\Leftrightarrow\left(x-\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)( đúng với ∀ x, y ∈ R )
=> đpcm
Bài 1:
Ta có:
\(x^2+xy+y^2=\frac{3}{4}(x^2+2xy+y^2)+\frac{1}{4}(x^2-2xy+y^2)\)
\(=\frac{3}{4}(x+y)^2+\frac{1}{4}(x-y)^2\geq \frac{3}{4}(x+y)^2\)
\(\Rightarrow \sqrt{x^2+xy+y^2}\geq \frac{\sqrt{3}(x+y)}{2}\)
Hoàn toàn tương tự:
\(\sqrt{y^2+yz+z^2}\geq \frac{\sqrt{3}(y+z)}{2}; \sqrt{z^2+xz+x^2}\geq \frac{\sqrt{3}(x+z)}{2}\)
Cộng theo vế các BĐT trên:
\(\Rightarrow \sqrt{x^2+xy+y^2}+\sqrt{y^2+yz+z^2}+\sqrt{z^2+xz+x^2}\geq \sqrt{3}(x+y+z)\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z$
Bài 2:
BĐT cần chứng minh tương đương với:
$4(a^9+b^9)-(a+b)(a^3+b^3)(a^5+b^5)\geq 0$
$\Leftrightarrow 4(a+b)(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a+b)(a^8+a^3b^5+a^5b^3+b^8)\geq 0$
$\Leftrightarrow 4(a^8-a^7b+a^6b^2-a^5b^3+a^4b^4-a^3b^5+a^2b^6-ab^7+b^8)-(a^8+a^3b^5+a^5b^3+b^8)\geq 0$
$\Leftrightarrow 3a^8+3b^8+4a^6b^2+4a^2b^6+4a^4b^4-(4a^7b+4ab^7+5a^5b^3+5a^3b^5)\geq 0$
$\Leftrightarrow (a-b)^2(a^2-ab+b^2)(3a^4+5a^3b+7a^2b^2+5ab^3+3b^4)\geq 0$
BĐT trên luôn đúng vì:
$(a-b)^2\geq 0, \forall a,b$
$a^2-ab+b^2=(a-\frac{b}{2})^2+\frac{3}{4}b^2\geq 0, \forall a,b$
$3a^4+5a^3b+7a^2b^2+5ab^3+3b^4=3(a^4+b^4+2a^2b^2)+a^2b^2+5ab(a^2+b^2)$
$=3(a^2+b^2)^2+5ab(a^2+b^2)+a^2b^2$
$=(a^2+b^2)(3a^2+3b^2+5ab)+a^2b^2=(a^2+b^2)[3(a+\frac{5}{6}b)^2+\frac{11}{12}b^2]+a^2b^2\geq 0$ với mọi $a,b$
Do đó ta có đpcm.
Dấu "=" xảy ra khi $a=b$ hoặc $a+b=0$
\(3x^2+5y^2-2x-2xy+1\)
\(=\left(x^2-2x+1\right)+\left(x^2-2xy+y^2\right)+x^2+4y^2\)
\(=\left(x-1\right)^2+\left(x-y\right)^2+x^2+4y^2\ge0\forall x:y\)
Do dấu bằng không xảy ra \(\Rightarrow\left(x+1\right)^2+\left(x-y\right)^2+x^2+4y^2>0\forall x:y\)
Text
\(\left(2x+3y\right)^2\le\left(2+3\right)\left(2x^2+3y^2\right)\\ \Rightarrow2x^2+3y^2\ge5\)
Áp dụng bất đẳng thức Bunhiacopski:
\(15=4x-3y\le\sqrt{\left(4^2+3^2\right)\left(x^2+y^2\right)}\)
=> (x2 + y2) >=(15/5)2 = 9