Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu góc bằng 60 độ là góc ở đáy => Góc đáy bên còn lại cũng bằng 60 độ (tam giác cân)
=> Góc ở đỉnh là 180 - 60 - 60 = 60 độ
Nếu góc ở đỉnh là 60 độ => Tổng 2 góc đáy bằng 180 - 60 = 120 độ
Mà 2 góc đáy bằng nhau (tam giác cân) nên chúng cùng bằng 120 : 2 = 60 độ
Ở cả 2 trường hợp thì tam giác đều có 3 góc bằng 60 độ => Đó là tam giác đều
Chúc bạn học tốt!
Tam giác đều có 3 cạnh bằng nhau, 3 góc bằng nhau (Đn)
Gọi 1 góc của tam giác đều đó là a
Vì tổng 3 góc trong của 1 tam giác = 180o
=> a + a + a = 180o
=> 3a = 180o
=> a = 60o
=> Tam giác đều có 3 góc bằng 60o
* tam giác đều
- chứng minh tam giác có 3 cạnh = nhau
- chứng minh tam giác có 3 góc = nhau
- chứng minh tam giác có 2 góc = 60*
- chứng minh tam giác cân có 1 góc = 60*
Có tổng cộng 4 cách nha
ngoài 4 cách ấy ra,đang còn một cách nx đó là:2 đường cao vừa là phân giác vừa là trung tuyến
học tốt!
2) góc còn lại là 180 - 2.60=60
vậy 3 góc =60 độ => tam giác đều
1) 3 góc = nhau => 3*A=180 độ (gọi 3 góc là A,B,C)
=> a=60 độ = góc B = góc C
a: Đúng
Vì ΔABC=ΔDEF
nên AB=DE; BC=EF; AC=DF
=>CABC=CDEF
c: Đúng vì ΔABC vuông tại A nên \(\widehat{B}+\widehat{C}=90^0\)
d: Xét ΔABC có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow3\cdot\widehat{B}=180^0-60^0=120^0\)
\(\Leftrightarrow\widehat{B}=40^0\)
=>\(\widehat{A}=80^0\)(đúng)
Xét ΔABC có \(\widehat{A}=\widehat{B}\)
nên ΔABC cân tại C
=>CA=CB(1)
Xét ΔABC có \(\widehat{B}=\widehat{C}\)
nênΔABC cân tại A
=>AB=AC(2)
Từ (1) và (2) suy ra AB=AC=BC
=>ΔABC cân tại A