Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng BDT cô-si , ta có :
\(m^2+1\ge2\sqrt{m^2.1}=>m^2+1\ge2m\)
\(n^2+1\ge2\sqrt{n^2.1}=>n^2+1\ge2n\)
\(\Rightarrow m^2+1+n^2+1\ge2m+2n\)
\(\Rightarrow m^2+n^2+2\ge2\left(m+n\right)\)
dấu "=" xảy ra khi m=n =1
=> đpcm
Ta có \(m^2\ge0\) và \(n^2\ge0\)
Do đó \(m^2+n^2\ge0\)
Suy ra \(m^2+n^2+2\ge2\) (điều phải chứng minh).
vì m2 > 0 với mọi m
n2 > 0 với mọi n
=>m2+n2 > 0
do đó m2+ n2 +2 > 0+2=2
a2 = (m2 + n2)2 = m4 + 2m2.n2 + n4
b2 = (m2 - n2)2 = m4 - 2m2.n2 + n4
c2 = (2mn)2 = 4m2.n2
Nhận xét: a2 - b2 = c2 => a2 = b2 + c2
Theo ĐL pi - ta - go đảo => a; b; c là độ dài 3 cạnh của 1 tam giác vuông
Câu 1: Dùng biến đổi tương đương:
a/ \(3\left(m+1\right)+m< 4\left(2+m\right)\)
\(\Leftrightarrow3m+3+m< 8+4m\)
\(\Leftrightarrow4m+3< 8+4m\)
\(\Leftrightarrow3< 8\) (đúng), vậy BĐT ban đầu là đúng
b/ \(\left(m-2\right)^2>m\left(m-4\right)\)
\(\Leftrightarrow m^2-4m+4>m^2-4m\)
\(\Leftrightarrow4>0\) (đúng), vậy BĐT ban đầu đúng
Câu 2:
a/ \(b\left(b+a\right)\ge ab\)
\(\Leftrightarrow b^2+ab\ge ab\)
\(\Leftrightarrow b^2\ge0\) (luôn đúng), vậy BĐT ban đầu đúng
b/ \(a^2-ab+b^2\ge ab\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Câu 3:
a/ \(10a^2-5a+1\ge a^2+a\)
\(\Leftrightarrow9a^2-6a+1\ge0\)
\(\Leftrightarrow\left(3a-1\right)^2\ge0\) (luôn đúng)
b/ \(a^2-a\le50a^2-15a+1\)
\(\Leftrightarrow49a^2-14a+1\ge0\)
\(\Leftrightarrow\left(7a-1\right)^2\ge0\) (luôn đúng)
Câu 4:
Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow VT=\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)
\(\Rightarrow VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(\Rightarrow VT< 2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)
Lời giải:
Áp dụng BĐT Cô-si cho các số không âm ta có:
$\frac{a^2}{2}+8b^2\geq 2\sqrt{4a^2b^2}=2|2ab|\geq 4ab$
$\frac{a^2}{2}+8c^2\geq 2|2ac|\geq 4ac$
$2b^2+2c^2\geq 2\sqrt{4b^2c^2}=2|2bc|\geq 4bc$
Cộng theo vế các BĐT trên:
$\Rightarrow a^2+10b^2+10c^2\geq 4(ab+bc+ac)=4$ (đpcm)
Dấu "=" xảy ra khi \(a=4b=4c=\pm \frac{4}{3}\)
Xét hiệu: 2m2 + 2n2 + 1 - 2m - 2n = 2.(m2 - m + 1/4) + 2.(n2 - n +1/4) = \(=2.\left(m-\frac{1}{2}\right)^2+2.\left(n-\frac{1}{2}\right)^2\ge0\) với mọi m; n
=> ĐPCM
ta có \(m^2-2m+1+n^2-2n+1=\left(m-1\right)^2+\left(n-1\right)^2\ge0\Rightarrow DPCM\)