K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2016

Giả sử số đề bài cho là a00a ( a thuộc n* )

Có : a00a =1000a +0 +a  = 1001a  chia hết cho 11

Tương tự :

Giả sử số đề bài cho là a0000a (a thuộc n* )

Có : a0000a = 100000a +0+ a = 100001a chia hết cho 11.

Tương tự với các trường hợp khác. 

19 tháng 7 2017

Cho a là 1 số chia hết cho 5

=> 4 số nguyên liên tiếp không chia hết cho 5 là: a+1, a+2, a+3, a+4

Hiệu của tích 2 số cuối với hiệu tích 2 số đầu là: (a+3)(a+4) - (a+1)(a+2) = \(a^2+4a+3a+12-\left(a^2+2a+a+2\right)\)

=\(a^2+4a+3a+12-a^2-2a-a-2\)

=\(4a+10\)

Vì a chia hết cho 5 nên tận cùng của a là 0 hoặc 5

Nếu a tận cùng bằng 0 thì 4a tận cùng bằng 0

Nếu a tận cùng bằng 5 thi 4a tận cùng bằng 4.5 = 20 ( tận cùng cũng bằng 0)

=> 4a tận cùng bằng 0

=> 4a + 10 có tận cùng bằng 0

Vậy hiệu của tích 2 số cuối với tích 2 số đầu có tận cùng bằng 0

Tk mình nha

Xin chém:(ko cần Đi-rích-lê nhưng cũng gần giống) 
Gọi 39 số liên tiếp đó là x1;x2;x3;...;x39x1;x2;x3;...;x39 và xi=xi−1+1xi=xi−1+1 với 2⩽xi⩽392⩽xi⩽39
Trong 39 số đó chắc chắn tồn tại 1 số nhỏ nhất chia hết cho 10 và 39 số đó đều khác 0.
Gọi số nhỏ nhất chia hết cho 10 đó là xjxj và j⩽10j⩽10
Vậy có ít nhất 29 số lớn hơn xjxj.
Gọi tổng các chữ số của xjxj là a
Xét 11 số xj;xj+1;xj+2;...;xj+9;xj+19;xj+29xj;xj+1;xj+2;...;xj+9;xj+19;xj+29 có tổng các chữ số lần lượt là a;a+1;a+2;...;a+9;a+10;a+11
Vì đó là 11 số liên tiếp nên tồn tại 1 số trong dãy a;a+1;a+2;...;a+9;a+10;a+11 chia hết cho 11
Vậy ta có đpcm 

30 tháng 7 2017

Bài 2 Chứng minh :  A.B + 1 là số chính phương với

a/      A =11...1 và B =100...05  (có n chữ số 1  và  n-1 chữ số 0)

        Lời giải:   

Thấy A = 1111 … 11 và B = 100…005

Nên:  A + (8A + 6) = 1111…11+ 888…94 = 100…05 = B. Tức là 9A + 6 = B

Do đó: A.B + 1 = A.(9A + 6) + 1 = 9A2 + 6.A + 1 = (3A + 1)2 

b/     A = 11...12  và  B =11...14   (có n chữ số 1)

         Lời giải: Thấy B = A + 2 Nên AB + 1 = A.(A + 2) +1 = (A+1)2 

Bài 3  Cho A là số gồm 2n chữ số 1, B là số gồm n+1 chữ số 1, C là số gồm n chữ số 6.              

         Chứng minh rằng:  (A + B + C + 8) là số chính phương

 Lời giải:  - Với n =1  Thì A = 11,  B = 11,  C = 6  Nên A + B + C + 8 = 36 = 62 

- Với  n = 2 Thì A = 1111,  B = 111,  C = 66 Nên A + B + C + 8 = 1296 = 362  

- Với n = 3 Thì A = 111111,   B = 1111,  C = 666 Nên A + B + C + 8 = 112896 = 3362 

-  Trường hợp tổng quát,  n>3 

Đặt S = A + B + C + 8 = 111…12888…88 + 8 = 111… 12888…896.  

 Cộng dọc, viết ngay ngắn các bạn dễ thấy:   

 S Là số tự nhiên có 2n chữ số, gồm n-1 chữ số 1, một chữ số 2, có  n-2 chữ số 8, một chữ số 9 và một chữ số 6

 (Với n là số tự nhiên, n>2)  

Ta có S = 111…12888…896  = 111…12888…87 + 9 =   333…33x333…39 + 9 =  

                                                    =  333…33x(333…33 + 6) + 9 =

                                                    = 333…332 + 6x333…33 + 9 = (333…33 + 3)2 = 333…362  

                                                  (Số 333…36 có n chữ số, gồm n-1 chữ số 3 và một chữ số 6 ) 

Bài 4  Chứng minh số \(\frac{1}{3}.\left(111...11-333...3300...00\right)\) là lập phương của 1 số tự nhiên

( n chữ số 1, n chữ số 3, n chữ số 0)

Lời giải : Số đã cho là một số âm nên nó không thể bằng lập phương của một số tự nhiên. (Bạn xem lại đề ra đi nhé)

Bài 5:  Cho 1 dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách chèn số 15 vào giữa số hạng liền trước: 

Vd: 16 => 1156 => 111556 => 11115556 =>...

Chứng minh mọi số hạng của dãy đều là số chính phương. 

Bài 2 Chứng minh :  A.B + 1 là số chính phương với

a/      A =11...1 và B =100...05  (có n chữ số 1  và  n-1 chữ số 0)

        Lời giải:   

Thấy A = 1111 … 11 và B = 100…005

Nên:  A + (8A + 6) = 1111…11+ 888…94 = 100…05 = B. Tức là 9A + 6 = B

Do đó: A.B + 1 = A.(9A + 6) + 1 = 9A2 + 6.A + 1 = (3A + 1)2 

b/     A = 11...12  và  B =11...14   (có n chữ số 1)

         Lời giải: Thấy B = A + 2 Nên AB + 1 = A.(A + 2) +1 = (A+1)2

Bài 3  Cho A là số gồm 2n chữ số 1, B là số gồm n+1 chữ số 1, C là số gồm n chữ số 6.              

         Chứng minh rằng:  (A + B + C + 8) là số chính phương

 Lời giải:  - Với n =1  Thì A = 11,  B = 11,  C = 6  Nên A + B + C + 8 = 36 = 62 

- Với  n = 2 Thì A = 1111,  B = 111,  C = 66 Nên A + B + C + 8 = 1296 = 362  

- Với n = 3 Thì A = 111111,   B = 1111,  C = 666 Nên A + B + C + 8 = 112896 = 3362 

-  Trường hợp tổng quát,  n>3  

Đặt S = A + B + C + 8 = 111…12888…88 + 8 = 111… 12888…896.  

 Cộng dọc, viết ngay ngắn các bạn dễ thấy:   

 S Là số tự nhiên có 2n chữ số, gồm n-1 chữ số 1, một chữ số 2, n-2 chữ số 8, một chữ số 9 và một chữ số 6

 (Với n là số tự nhiên, n>2)  

Ta có S = 111…12888…896  = 111…12888…87 + 9 =   333…33x333…39 + 9 =  

                                                    =  333…33x(333…33 + 6) + 9 =

                                                    = 333…332 + 6x333…33 + 9 = (333…33 + 3)2 = 333…362  

                                                  (Số 333…36 có n chữ số, gồm n-1 chữ số 3 và một chữ số 6 )

Bài 4  Chứng minh số .(11...1-33...300...0) là lập phương của 1 số tự nhiên

( n chữ số 1, n chữ số 3, n chữ số 0)

Bài 5:  Cho 1 dãy số có số hạng đầu là 16, các số hạng sau là số tạo thành bằng cách chèn số 15 vào giữa số hạng liền trước: Vd: 16 => 1156 => 111556 => 11115556 =>...

Chứng minh mọi số hạng của dãy đều là số chính phương

   Lời giải:  Ta có hai số hạng đầu của dãy số đó là :

                               16 = 15 + 1 = 3 . 5 + 1 = 3.(3 + 2) + 1 = 32 + 2.3 + 1 = (3 + 1)2

                            1156 = 1155 + 1 = 33x35 + 1 = 33x(33 + 2) + 1 = 332 + 2.33 + 1 = (33 + 1)2

Số hạng tổng quát (Có n chữ số 1, có  n-1 chữ số 5 và 1 chữ số 6) 111…55…56 Ta biến đổi :

111…1155…56  = 111…1155…55 + 1 =

                            = 333…33x333…35 + 1 = 333…33x(333..33 + 2) + 1 =

                            = 333…332 + 2x333…33 + 1 = (333…33 + 1)2 = 333…342

                                                      (333…34  Có n-1 chữ số 3 và một chữ số 4)

Chú ý rằng: Tích (Mỗi thừa số có n chữ số. Thừa số thứ nhất có n – 1 chữ số 3 và một chữ số 5 ở hàng đơn vị, thừa số thứ hai có n chữ số 3):  333…35x 333…3 viết dạng nhân dọc :

                           333…335                               (Có n-1 chữ số 3 và một chữ số 5)        

                     x    333... 333

                ________________

                         100...005                          Có n+1 chữ số, gồm một chữ số 1, một chữ số 5 và n-1 chữ số 0)

                     100… 005     ( Có n+1 chữ số, gồm một chữ số 1, một chữ số 5 và n-1 chữ số 0)

                        ……………

          100…005                   (Có n+1 chữ số, gồm một chữ số 1, một chữ số 5 và n-1 chữ số 0)

_______________________

          11…1155…555         (Có n chữ số 1 và n chữ số 5)

30 tháng 7 2017

Chúc bạn Nguyễn Như Quỳ học tập ngày càng giỏi . Bạn tìm đâu ra những bài toán hay đến vậy ?