Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi a=UCLN(n+1;2n+3)
\(\Leftrightarrow2n+3-2\left(n+1\right)⋮a\)
\(\Leftrightarrow1⋮a\)
=>a=1
=>n+1/2n+3 là phân số tối giản
b: Gọi d=UCLN(2n+5;4n+8)
\(\Leftrightarrow4n+10-4n-8⋮d\)
\(\Leftrightarrow2⋮d\)
mà 2n+5 là số lẻ
nên n=1
=>2n+5/4n+8 là phân số tối giản
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
Để chứng minh một phân số là tối giản, ta cần chứng minh ƯCLN (tử, mẫu) = 1
Bài giải
a) Ta có phân số: \(\frac{n+1}{3n+4}\)(n \(\inℕ\))
Gọi ƯCLN (n + 1; 3n + 4) là d (d \(\inℕ^∗\))
=> n + 1 \(⋮\)d; 3n + 4 \(⋮\)d
=> 3n + 4 - 3(n + 1) \(⋮\)d
=> 1 \(⋮\)d
=> ƯCLN (n + 1; 3n + 4) = 1
=> \(\frac{n+1}{3n+4}\)là phân số tối giản
=> ĐPCM
b) Ta có phân số: \(\frac{2n+3}{3n+5}\)(n \(\inℕ\))
Gọi ƯCLN (2n + 3; 3n + 5) là d (d \(\inℕ^∗\))
=> 2n + 3 \(⋮\)d; 3n + 5 \(⋮\)d
=> 2(3n + 5) - 3(2n + 3) \(⋮\)d
=> 1 \(⋮\)d
=> ƯCLN (2n + 3; 3n + 5) = 1
=> \(\frac{2n+3}{3n+5}\)là phân số tối giản
=> ĐPCM
a) Gọi (n+1,3n+4) là d ( d thuộc N* )
=> n+1 và 3n+4 đều chia hết cho d
=> (3n+4)-3(n+1) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> (n+1,3n+4)=1 nên n+1 và 3n+4 là 2 SNT cùng nhau
=> P/s n+1/3n+4 tối giản với mọi n thuộc N (đpcm)
b) Gọi (2n+3,3n+5) là d (d thuộc N*)
=> 2n+3 chia hết cho d và 3n+5 chia hết cho d
=> (3n+5)-(2n+3) chia hết cho d
=> 2(3n+5)-3(2n+3) chia hết cho d
=> 6n+10-6n+9 chia hết cho d
=> d=1
=> (2n+3,3n+5)=1 nên 2n+3 và 3n+5 là 2 SNT cùng nhau
=> P/s 2n+3/3n+5 tối giản với mọi n thuộc N (đpcm)
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )
n +1 = 2n + 2 (1) ; 2n+3*) (2)
Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1
vậy ta có đpcm
gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )
3n +2 = 15 n + 10 (1) ; 5n + 3 =15n + 9 (2)
lấy (!) - (2) ta được 15n + 10 - 15n - 9 = 1:d => d = 1
Vậy ta có đpcm
Chứng minh rằng mọi phân số có dạng:
a)n+1/2n+3 (n là số tự nhiên)
b)2n+3/3n+5 ( n là số tự nhiên) đều là phân số tối giản