Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: m - 1 2 ≥ 0; n - 1 2 ≥ 0
⇒ m - 1 2 + n - 1 2 ≥ 0
⇔ m 2 – 2m + 1 + n 2 – 2n + 1 ≥ 0
⇔ m 2 + n 2 + 2 ≥ 2(m + n)
\(m^3+n^3+p^3-3mnp=\left(m^3+3m^2n+3mn^2+n^3\right)+p^3-3mnp-3m^2n-3mn^2=\left(m+n\right)^3+p^3-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left[\left(m+n\right)^2-\left(m+n\right)p-p^2\right]-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-mp-np-p^2\right)-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-mp-np-p^2-3mn\right)\)
\(=\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-mp\right)\)
\(m^3+n^3+p^3-3nmp\)
\(=\left(m+n\right)^3+p^3-3mn\left(m+n\right)-3mnp\)
\(=\left(m+n+p\right)\left(m^2+2mn+n^2-pm-pn+p^2\right)-3mn\left(m+n+p\right)\)
\(=\left(m+n+p\right)\left(m^2+n^2+p^2-pm-pn-mn\right)\)
ta có \(m^2-2m+1+n^2-2n+1=\left(m-1\right)^2+\left(n-1\right)^2\ge0\Rightarrow DPCM\)
áp dụng BDT cô-si , ta có :
\(m^2+1\ge2\sqrt{m^2.1}=>m^2+1\ge2m\)
\(n^2+1\ge2\sqrt{n^2.1}=>n^2+1\ge2n\)
\(\Rightarrow m^2+1+n^2+1\ge2m+2n\)
\(\Rightarrow m^2+n^2+2\ge2\left(m+n\right)\)
dấu "=" xảy ra khi m=n =1
=> đpcm
Ta có \(m^2\ge0\) và \(n^2\ge0\)
Do đó \(m^2+n^2\ge0\)
Suy ra \(m^2+n^2+2\ge2\) (điều phải chứng minh).
vì m2 > 0 với mọi m
n2 > 0 với mọi n
=>m2+n2 > 0
do đó m2+ n2 +2 > 0+2=2
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\) (đpcm)
A a^2+2a nhỏ hơn a^2+2a+1 suy ra đpcm
B m^2+n^2+2-2(m+n)
=m^2-2m+1+n^2-2n+1=(m-1)^2+(n-1)^2 lớn hơn hoặc bg 0+0=0
Suy ra m^2+n^2+2-2(m-n) lớn hơn hoặc bg 0
Suy ra m^2+n^2+2 lớn hơn hoặc bg 2(m-n)
Ta có:
m2-2m+1+n2-2n+1
=(m-1)2+(n-1)2>0
Đpcm
Dễ thui Ta có: 2 = 2 mà đây là tổng
=> đẳng thức trên lớn hơn 2
Bừa hìhif