Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với x,y thuộc tập hợp số hơux tỉ
Ta có: x nhỏ hơn hoặc bằng lxl ;-x nhỏ hơn hoặc bằng lxl; y nhỏ hơn hoặc bằng lyl ;-y nhỏ hơn hoặc bằng lyl
Suy ra:x+y nhỏ hơn hoặc bằng lxl +lyl (1) ; -x-y nhỏ hơn hoặc bằng lxl+lyl
Suy ra:(x+y)lớn hơn hoạc bằng-(lxl+lyl) (2)
Từ (1) và (2) suy ra;-(lxl+lyl)nhỏ hơn hoặc bàng x+ynhor hơn hoặc bằng lxl+lyl
Vậy lx+yl nhỏ hơn hoặc bằng lxl+lyl
Chúc bn học tốt
Ta có: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
\(\Leftrightarrow\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2\le x^2+y^2+2.\left|x\right|.\left|y\right|\)
\(\Leftrightarrow2xy\le\left|2xy\right|\)( BĐT luôn đúng )
Vậy \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Phương án A: | x | < | y | Vì: Giá trị truyệt đối của 1 số sẽ luôn cho kết quả là 1 số dương nên | x | = | -30 | = 30
| y | = | -70 | = 70
====> | x | < | y |
Chọn phương án A.
BIẾT -3/4 a = 21/10 thì giá trị của a là :
a/ -14/5
b/14/5
c/24/5
d/-24/5
Ta có: \(\left|x\right|\ge x;\left|x\right|\ge-x\forall x\)
\(\left|y\right|\ge y;\left|y\right|\ge-y\forall y\)
\(\Rightarrow\left|x\right|+\left|y\right|\ge x+y;\left|x\right|+\left|y\right|\ge-\left(x+y\right)\)
\(\Rightarrow x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)
Do đó, \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)
\(\Rightarrow\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Dấu ''='' xảy ra khi \(xy\ge0\)
\(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
\(\Leftrightarrow\left(\left|x+y\right|\right)^2\le\left(\left|x\right|+\left|y\right|\right)^2\)
\(\Leftrightarrow x^2+2xy+y^2\le x^2+2\left|xy\right|+y^2\)
\(\Leftrightarrow2xy\le2\left|xy\right|\)
\(\Leftrightarrow xy\le\left|xy\right|\) (luôn đúng)
Dấu = khi \(xy\ge0\)