K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

mk ko hiểu đề

AH
Akai Haruma
Giáo viên
8 tháng 9 2017

Lời giải:

Đặt \((x+y+z,xy+yz+xz)=(a,b)\). Bài toán trở thành:

Cho \(a,b\in\mathbb{R}|a+b=5\).CMR: \(a^2-2b\geq 3\)

----------------------------------------------------------------

Với mọi \(x,y,z\in\mathbb{R}\Rightarrow x^2+y^2+z^2\geq xy+yz+xz\)

BĐT đúng vì tương đương với \((x-y)^2+(y-z)^2+(z-x)^2\geq 0\)

Suy ra \((x+y+z)^2\geq 3(xy+yz+xz)\Leftrightarrow a^2\geq 3b\)

Bây giờ, thử \(a^2-2b=3\)

Giải HPT \(\left\{\begin{matrix} a+b=5\\ a^2-2b=3\end{matrix}\right.\Rightarrow \) \(\left\{\begin{matrix} a=-1-\sqrt{14}\\ b=6+\sqrt{14}\end{matrix}\right.\Rightarrow a^2<3b\) (vô lý)

Thử \(a^2-2b=4\)

Giải HPT suy ra \(\left\{\begin{matrix} a=-1-\sqrt{15}\\ b=6+\sqrt{15}\end{matrix}\right.\Rightarrow a^2<3b\) (vô lý)

Vậy kết luận là đề bài sai.

24 tháng 2 2019

thử k mất tính tổng quát xem sao bạn

sao có a ở trong đề nx z?

10 tháng 3 2020

à sai đề :  \(2a\Rightarrow2x\)

18 tháng 11 2016

\(x^2+4y^2+z^2-2x+8y-6z+15=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1=0\)

Mà ta có

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(2y+2\right)^2\ge0\\\left(z-3\right)^2\ge0\end{cases}}\)

\(\Rightarrow\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\)

Vậy không tồn tại x, y, z thỏa mãn đẳng thức trên