Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Đặt \((x+y+z,xy+yz+xz)=(a,b)\). Bài toán trở thành:
Cho \(a,b\in\mathbb{R}|a+b=5\).CMR: \(a^2-2b\geq 3\)
----------------------------------------------------------------
Với mọi \(x,y,z\in\mathbb{R}\Rightarrow x^2+y^2+z^2\geq xy+yz+xz\)
BĐT đúng vì tương đương với \((x-y)^2+(y-z)^2+(z-x)^2\geq 0\)
Suy ra \((x+y+z)^2\geq 3(xy+yz+xz)\Leftrightarrow a^2\geq 3b\)
Bây giờ, thử \(a^2-2b=3\)
Giải HPT \(\left\{\begin{matrix} a+b=5\\ a^2-2b=3\end{matrix}\right.\Rightarrow \) \(\left\{\begin{matrix} a=-1-\sqrt{14}\\ b=6+\sqrt{14}\end{matrix}\right.\Rightarrow a^2<3b\) (vô lý)
Thử \(a^2-2b=4\)
Giải HPT suy ra \(\left\{\begin{matrix} a=-1-\sqrt{15}\\ b=6+\sqrt{15}\end{matrix}\right.\Rightarrow a^2<3b\) (vô lý)
Vậy kết luận là đề bài sai.
\(x^2+4y^2+z^2-2x+8y-6z+15=0\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6z+9\right)+1=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1=0\)
Mà ta có
\(\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(2y+2\right)^2\ge0\\\left(z-3\right)^2\ge0\end{cases}}\)
\(\Rightarrow\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\)
Vậy không tồn tại x, y, z thỏa mãn đẳng thức trên