Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\frac{x^2}{a^2}\)+ \(\frac{y^2}{b^2}\)+\(\frac{z^2}{c^2}\)= \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
=> ( \(\frac{x^2}{a^2}\)+ \(\frac{y^2}{b^2}\)+ \(\frac{z^2}{c^2}\))( \(a^2+b^2+c^2\))= \(x^2+y^2+z^2\)
=> \(x^2\)+ \(\frac{\left(b^2+c^2\right)x^2}{a^2}\)+ \(y^2\)+ \(\frac{\left(a^2+c^2\right)y^2}{b^2}\)+ \(z^2\)+ \(\frac{\left(a^2+b^2\right)z^2}{c^2}\)= \(x^2+y^2+z^2\)
=> \(\frac{\left(b^2+c^2\right)x^2}{a^2}\)+ \(\frac{\left(a^2+c^2\right)y^2}{b^2}\)+ \(\frac{\left(a^2+b^2\right)z^2}{c^2}\)= 0
nhận xét ...... ( tát cả đều lớn hơn hoặc = 0 nên cả tổng sẽ lớn hơn hoặc = 0)
dấu = xảy ra khi và chi khi x=y = z = 0 ( vì a,b,c khác 0)
vậy \(x^{2011}+y^{2011}+z^{2011}\)= 0 +0+0 = 0
\(\text{Có: }x^2+y^2+z^2=xy+yz+xz\)
\(\Leftrightarrow2\left(x^2+y^2+z^2\right)=2\left(xy+yz+xz\right)\)
\(\Leftrightarrow x^2+x^2+y^2+y^2+z^2+z^2=2xy+2yz+2xz\)
\(\Leftrightarrow x^2+x^2+y^2+y^2+z^2+z^2-2xy-2yz-2xz=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(x^2-2xz+z^2\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\text{Vì }\left(x-y\right)^2\ge0;\left(y-z\right)^2\ge0\text{ và }\left(x-z\right)^2\ge0\)
\(\text{Nên để }\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2=0\)
\(\text{thì }\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(x-z\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\x=z\end{cases}\Leftrightarrow}x=y=z}\)
\(\text{Khi đó: }x^{2011}+y^{2011}+z^{2011}=3^{2012}\)
\(\Leftrightarrow x^{2011}+x^{2011}+x^{2011}=3^{2012}\left(\text{Vì x = y = z}\right)\)
\(\Leftrightarrow3x^{2011}=3^{2012}\)
\(\Leftrightarrow x^{2011}=3^{2011}\)
\(\Leftrightarrow x=3\)
\(\text{Vậy }x=y=z=3\)
Áp dụng định lý Bezout, số dư của phép chia f(x) cho g(x) là \(f\left(1\right)\)
\(f\left(1\right)=1+2-3-4+...-2011-2012\)
\(=-2-2-2-....-2\) (\(\frac{2012}{2}=1006\) số -2)
\(=-2012\)
Vậy số dư là \(-2012\)
Với x = 2011 => x + 1 = 2012
=> A = x10 - ( x + 1 )x9 + ( x + 1)x8 - ( x+ 1)x7 + ( x + 1 )x6 - ( x + 1 )x5+ ( x + 1 )x4 - ( x + 1 )x3 + ( x + 1)x2 - ( x + 1 )x + 2012
= x10 - x10 - x9 + x9 + x8 - x8 - x7 + x7+ x6- x6 - x5 + x5 + x4 - x4 - x3 + x3 + x2 - x2 - x + 2012
= -x + 2012
Thay x=2011 vào ta được: ( - 2011 ) + 2012 = 1
Bài 1: Chỉ cần chú ý đẳng thức \(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-a^2b^2\left(a+b\right)\) là ok!
Làm như sau: Từ \(x^2+\frac{1}{x^2}=14\Rightarrow x^2+2.x.\frac{1}{x}+\frac{1}{x^2}=16\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2=16\). Do \(x>0\Rightarrow x+\frac{1}{x}>0\Rightarrow x+\frac{1}{x}=4\)
: \(x^5+\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)
\(=14\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)
\(=14\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1\right)-4\)
\(=14.4.\left(14-1\right)-4=724\) là một số nguyên (đpcm)
P/s: Lâu ko làm nên cũng ko chắc đâu nhé!
Ta có : \(x^2+2012x+2011^{2011}-1=0\)
\(\Leftrightarrow x^2+2012x+1006^2=2011^{2011}+1+1006^2\)
\(\Rightarrow\left(x+1006\right)^2=2011^{2011}+1+1006^2\)
Giả sử x là một số nguyên thì VT là một số chính phương.
Khi đó VP cũng là số chính phương.
Lại có 20112011 có tận cùng là chữ số 1, 10062 có tận cùng là chữ số 6 nên VP có tận cùng là chữ số 8.
Lại có không một số chính phương nào có tận cùng là chữ số 8 hay VP không là số chính phương.
Vậy giả sử sai hay không tồn tại số nguyên x thỏa mãn phương trình trên.