Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Nếu \(x,y,z\)đôi một không cùng số dư khi chia hết cho \(3\), khi đó giả sử \(x\equiv0\left(mod3\right),y\equiv1\left(mod3\right),z\equiv2\left(mod3\right)\).
Ta có: \(VP\equiv0+1+2\equiv0\left(mod3\right)\)
\(VT\)không có thừa số nào chia hết cho \(3\)nên \(VT⋮̸3\)do đó mâu thuẫn.
- Nếu có hai trong ba số \(x,y,z\)có cùng số dư khi chia cho \(3\).
Khi đó \(VT\)chia hết cho \(3\).
\(VP\)không chia hết cho \(3\)(mâu thuẫn).
Do đó cả \(3\)số \(x,y,z\)có cùng số dư khi chia cho \(3\).
Vậy \(x+y+z=\left(x-y\right)\left(y-z\right)\left(z-x\right)⋮\left(3.3.3\right)\)
hay ta có đpcm.
Một số nguyên chia cho 3 có số dư là 0,1 hoặc 2
- Nếu x,y,z chia cho 3 có số dư khác nhau
\(\Rightarrow x-y⋮̸3;y-z⋮̸3;z-x⋮̸3\)còn \(x+y+z⋮3\)
Do đó \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=x+y+z\)không xảy ra
- Nếu x,y,z chỉ có hai số chia cho 3 có cùng số dư
Không mất tính tổng quát,giả sử là x và y ta có :
\(x-y⋮3,x+y+z⋮̸3\)
Do đó \(\left(x-y\right)\left(y-z\right)\left(z-x\right)=x+y+z\)cũng không xảy ra
Do đó x,y,z chia cho 3 có cùng số dư
\(\Rightarrow x-y⋮3;y-z⋮3;z-x⋮3\)
\(\Rightarrowđpcm\)
Không mất tính tổng quát giả sử \(z=min\left(x;y;z\right)\)
Từ giả thiết x+y+z=3 => \(3z\le x+y+z\)Do đó \(0\le z\le1\)
Đặt x=1+a; y=1+b; c=1-a-b. Do 0 =<c=<1 nên 0 =< a+b =< 1
Ta có \(\left(x-1\right)^3+\left(y-1\right)^3+\left(z-1\right)^3=a^3+b^3+\left(-a-b\right)^3=-3ab\left(a+b\right)\)
Mặt khác \(\left(a-b\right)^2\ge0\forall a,b\Rightarrow ab\le\frac{\left(a+b\right)^2}{4}\)
\(\Rightarrow ab\left(a+b\right)\le\frac{\left(a+b\right)^2}{4}\le\frac{1}{4}\left(0\le a+b\le1\right)\)
\(\Rightarrow-3ab\left(a+b\right)\ge\frac{-3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=\frac{1}{2}\)
Khi đó \(x=y=\frac{3}{2};z=0\)
Câu 1 bạn dùng chia hết cho 13
Câu 2 bạn cộng cả 2 vế với z^4 rồi dùng chia 8
Câu 3 bạn đặt a^4n là x thì x sẽ chia 5 dư 1 và chia hết cho 4 hoăc chia 4 dư 1
Khi đó ta có x^2+3x-4=(x-1)(x+4)
đến đây thì dễ rồi
Câu 4 bạn xét p=3 p chia 3 dư 1 p chia 3 dư 2 là ra
Câu 6 bạn phân tích biểu thức của đề thành nhân tử có nhân tử x-2
Câu 5 mình nghĩ là kẹp giữa nhưng chưa ra
hùi nãy mem nào k sai cho t T_T t buồn
\(VT\ge6\left(x^2+y^2+z^2+2xy+2yz+2zx\right)-2\left(xy+yz+zx\right)+2.\frac{9}{4\left(x+y+z\right)}\)
\(=6\left(x+y+z\right)^2-2.\frac{\left(x+y+z\right)^2}{3}+\frac{9}{2\left(x+y+z\right)}=6.\left(\frac{3}{4}\right)^2-2.\frac{\left(\frac{3}{4}\right)^2}{3}+\frac{9}{2.\frac{3}{4}}\)
\(=\frac{27}{8}-\frac{3}{8}+6=9\)
\(\Rightarrow\)\(VT\ge9\) ( đpcm )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z=\frac{1}{4}\)
Chúc bạn học tốt ~
\(ab+bc+ca\le a^2+b^2+c^2\le\frac{\left(a+b+c\right)^2}{3}\) ( bđt phụ + Cauchy-Schwarz dạng Engel )
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)
CM bđt phụ : \(x^2+y^2+z^2\ge xy+yz+zx\)
\(\Leftrightarrow\)\(2x^2+2y^2+2z^2\ge2xy+2yz+2zx\)
\(\Leftrightarrow\)\(2x^2+2y^2+2z^2-2xy-2yz-2zx\ge0\)
\(\Leftrightarrow\)\(\left(x^2-2xy+y^2\right)+\left(y^2-2yz+z^2\right)+\left(z^2-2zx+x^2\right)\ge0\)
\(\Leftrightarrow\)\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)
Chúc bạn học tốt ~
cái chỗ math processing error kia là \(3\left(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}+\dfrac{1}{z^2+1}\right)+\left(1+x^2\right)\left(1+y^2\right)\left(1+z^2\right)\ge\dfrac{985}{108}\)