Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lấy \(x_1;x_2\in\left(-\infty;+\infty\right)\left(x_1\ne x_2\right)\)
\(y_1-y_2=x^3_1-x_2^3=\left(x_1-x_2\right)\left(x_1^2+x^2_2+x_1x_2\right)\)
\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=x_1^2+x^2_2+x_1x_2>0\forall x_1;x_2\)
\(\Rightarrow\) Hàm số đồng biến trên R
\(\begin{cases}y^2-x\sqrt{\frac{y^2+2}{x}}=2x-2\left(1\right)\\\sqrt{y^2+1}+\sqrt[3]{2x-1}=1\left(2\right)\end{cases}\)
Điều kiện \(x>0\)
Chia cả 2 vế của phương trình (1) cho \(x\) ta được :
\(\frac{y^2+2}{x}-\sqrt{\frac{y^2+2}{x}}-2=0\)
\(\Leftrightarrow\begin{cases}\sqrt{\frac{y^2+2}{x}=-1}\\\sqrt{\frac{y^2+2}{x}=2}\end{cases}\) \(\Leftrightarrow\frac{y^2+2}{x}=4\)
\(\Leftrightarrow y^2=4x+2\)
Thế vào phương trình (2) ta được : \(\sqrt{4x-1}+\sqrt[3]{2x-1}=1\)
Đặt \(\sqrt{4x-1}=u,\left(u\ge0\right),\sqrt[3]{2x-1}=v\) ta có hệ : \(\begin{cases}u+v=1\\u^2-2v^3=1\end{cases}\)
Giải hệ ta được \(u=1;v=0\Rightarrow x=\frac{1}{2};y=0\)
Vậy nghiệm của hệ phương trình là : \(x=\frac{1}{2};y=0\)
Lời giải
$y'=3x^2+1>0$ với mọi $x\in\mathbb{R}$ nên hàm $y=x^3+x$ đồng biến trên $\mathbb{R}$
PT $\Leftrightarrow x^3+x=\sqrt[3]{2x+1}+2x+1$
Đặt $\sqrt[3]{2x+1}=t$ thì:
$x^3+x=t^3+t$
Vì hàm $y=x^3+x$ đồng biến nên $x^3+x=t^3+t\Leftrightarrow x=t$
$\Leftrightarrow x=\sqrt[3]{2x+1}$
$\Leftrightarrow x^3=2x+1$
Giải pt này dễ dàng có $x=-1; \frac{1\pm \sqrt{5}}{2}$