K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

Đề bài câu a) bị sai: Với x =1 gái trị của A là -169, nhưng với x = 0 lại là 125

câu b)

\(B=9x^2+6x+1+12x-9x^2-30x-25+12x+6\)

\(=-18\)

Vậy, giá trị của biểu thức B luôn là (-18) hay giá trị của biểu thức B không phụ thuộc vào x

19 tháng 4 2017

(x - 5)(2x + 3) - 2x(x - 3) + x + 7

= 2x2 + 3x – 10x – 15 – 2x2 + 6x + x + 7

= 2x2 – 2x2 – 7x + 7x – 15 + 7 = -8

Vậy sau khi rút gọn biểu thức ta được hằng số -8 nên giá trị biểu thức không phụ thuộc vào giá trị của biến


19 tháng 4 2017

(x - 5)(2x + 3) - 2x(x - 3) + x + 7

= 2x2 + 3x – 10x – 15 – 2x2 + 6x + x + 7

= 2x2 – 2x2 – 7x + 7x – 15 + 7 = -8

Vậy sau khi rút gọn biểu thức ta được hằng số -8 nên giá trị biểu thức không phụ thuộc vào giá trị của biến.



11 tháng 12 2022

\(=\left(2x+5\right)\left(4x^2+20x+25-30x\right)-8x^3\)

\(=\left(2x+5\right)\left(4x^2-10x+25\right)-8x^3\)

=8x^3+125-8x^3

=125

6 tháng 6 2016

a/ \(=8x^3+2x^2-8x^3-8x^2-8x^3-2x+3=-8x^3-6x^2-2x+3\)

b/ \(=3x^2+12x-7x+20+2x^3-3x^2-2x^3-5x=20\)

Biểu thức A phụ thuộc vào x còn B thì không.

Với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y các phân thức có nghĩa. Ta có

\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)\(=\)\(\frac{5x\left(2x-3y\right)^2.y\left(2x^2+5xy+3y^2\right)}{3y\left(4x^2-9y^2\right).2x\left(x+y\right).\left(2x-3y\right)}\)

\(=\)\(\frac{10xy\left(2x-3y\right)^2.\left(2x^2+2xy+3xy+3y^2\right)}{6xy\left(2x-3y\right).\left(2x+3y\right)\left(x+y\right)\left(2x-3y\right)}\)\(=\)\(\frac{10xy\left(2x-3y\right)^2\left(x+y\right).\left(2x+3y\right)}{6xy\left(2x-3y\right)^2.\left(2x+3y\right).\left(x+y\right)}\)

\(=\)\(\frac{5}{3}\)

6 tháng 7 2017

ĐK \(\hept{\begin{cases}xy\ne0\\2x-3y\ne0,2x+3y\ne0\\x\ne-y\end{cases}}\)

\(=\frac{5x\left(2x-3y\right)^2}{3y\left(2x+3y\right)\left(2x-3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{xy\left(2x+3y\right)+y^2\left(2x+3y\right)}\)

\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{\left(2x+3y\right)\left(xy+y^2\right)}\)

\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}.\frac{y\left(x+y\right)\left(2x+3y\right)}{2x\left(x+y\right)\left(2x-3y\right)}=\frac{5}{6}\)

Vậy giá trị của biểu thức không phụ thuộc vào biến