Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(2x-1\right)^2\ge0\forall x\)=> \(\left(2x-1\right)^2+3\ge3\)
=> \(\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\forall x\)
Dấu "=" xảy ra <=> 2x - 1 = 0 <=> x = 1/2
Vậy MaxB = 5/3 khi x = 1/2
b) x = -5; y = 3 => P = 2. (-5).(-5 + 3 - 1) + 32 + 1 = -10. (-3) + 9 + 1 = 30 + 10 = 40
P = 2x(x + y - 1) + y2 + 1
P = 2x2 + 2xy - 2x + y2 + 1
P = (x2 + 2xy + y2) + (x2 - 2x + 1)
P = (x + y)2 + (x - 1)2 \(\ge\)0
=> P luôn nhận giá trị không âm với mọi x;y
a) Vì \(\left(2x-1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x-1\right)^2+3\ge3\forall x\)
\(\Rightarrow\frac{5}{\left(2x-1\right)^2+3}\le\frac{5}{3}\forall x\)
hay \(B\le\frac{5}{3}\)
Dấu " = " xảy ra \(\Leftrightarrow2x-1=0\)\(\Leftrightarrow2x=1\)\(\Leftrightarrow x=\frac{1}{2}\)
Vậy \(maxB=\frac{5}{3}\Leftrightarrow x=\frac{1}{2}\)
b) - Thay \(x=-5\)và \(y=3\)vào biểu thức ta được:
\(P=2.\left(-5\right).\left(-5+3-1\right)+3^2+1=30+9+1=40\)
- Ta có: \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)=\left(x+y\right)^2+\left(x-1\right)^2\)
Vì \(\left(x+y\right)^2\ge0\forall x,y\); \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+y\right)^2+\left(x-1\right)^2\ge0\forall x,y\)
hay P luôn nhận giá trị không âm với mọi x, y ( đpcm )
1/
Ta có \(\left(\frac{-1}{4}x^3y^4\right)\left(\frac{-4}{5}x^4y^3\right)\left(\frac{1}{2}xy\right)\)= \(\frac{1}{10}x^8y^8\ge0\)
Vậy ba đơn thức \(\frac{-1}{4}x^3y^4;\frac{-4}{5}x^4y^3;\frac{1}{2}xy\)không thể cùng có gt âm (đpcm)
3b : Ta có : \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)
\(=x^2+2xy+y^2+x^2-2x+1=\left(x+y\right)^2+\left(x-1\right)^2\)
Vậy biểu thức luôn nhận giá trị ko âm với mọi x ; y
M = 6x2+3xy- 2y2- 5 +3y2 - 2x2-3xy+5
= (6x2- 2x2) + ( 3xy -3xy) + ( - 2y2- 2y2)+ (- 5+5)
= 4x2+ y2
Mà 4x2 >0
y2> 0
Vậy....
Ta có: x4 > 0 với mọi x
và y6 > 0 với mọi y
=> x4y6 > 0 với mọi x,y hay x4y6 không âm với mọi x,y