Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3b : Ta có : \(P=2x\left(x+y-1\right)+y^2+1=2x^2+2xy-2x+y^2+1\)
\(=x^2+2xy+y^2+x^2-2x+1=\left(x+y\right)^2+\left(x-1\right)^2\)
Vậy biểu thức luôn nhận giá trị ko âm với mọi x ; y
\(P\left(x\right)=\dfrac{1}{2}x^3-\dfrac{1}{2}x^4+\dfrac{1}{2}x^2+\dfrac{1}{2}x^4-x^2=-\dfrac{1}{2}x^3+\dfrac{1}{2}x^2=-\dfrac{1}{2}x^2\left(x-1\right)\)
Vì x(x-1) chia hết cho 2 với mọi số nguyên x
nên P(x) luôn là số nguyên nếu x nguyên
1.Thay x=5,y=3 vào đa thức P,ta được:
2x(x+y-1)+y^2+1
=2.5(2+3-1)+3^2+1
=10.4+9+1
=40+(9+1)
=50
\(x^2+x+3=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{11}{4}=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}>0\) luôn dương với mọi x
------------------
\(-2x^2+3x-8=2\left(-x^2+\frac{3}{2}x-4\right)=2\left[-x^2+2.\frac{3}{4}.x-\frac{9}{16}-\frac{55}{16}\right]=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\)
\(=2\left[-\left(x-\frac{3}{4}\right)^2-\frac{55}{16}\right]\le-\frac{55}{15}< 0\) luôn âm với mọi x
\(-\frac{1}{4}x^2+x-2\)
\(=-\left(\frac{1}{4}x^2-2\cdot\frac{1}{2}x+1\right)-1\)
\(=-\left(\frac{1}{2}x-1\right)^2-1\)
Do \(\left(\frac{1}{2}x-1\right)^2\ge0\Rightarrow-\left(\frac{1}{2}x-1\right)^2\le0\Rightarrow-\left(\frac{1}{2}x-1\right)^2-1< 0\)
Vậy \(\left(-\frac{1}{4}\right)x^2+x-2\) luôn nhận giá trị âm với mọi giá trị của biến
đề bai chính là cm P>=0
ta có P=(X^2+2XY+Y^2) + (X^2- 2X+1)
=(X+Y)^2 + (X-1)^2
Tổng các pình phương lun >=0
\(x^4+2x^2+1=\left(x^2+1\right)^2\ge1>0\forall x\) ( đpcm )
`x^4+2x^2+1`
`=(x^2)^2 + 2.x^2 .1 + 1^2`
`=(x^2+1)^2 > 0 forall x`.