K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
25 tháng 9 2018

Lời giải:

Đặt \((x+y)^2=a; (x-y)^2=b\)

\(\Rightarrow a+b=2(x^2+y^2)\)

Khi đó:

\((x+y)^6+(x-y)^6=a^3+b^3=(a+b)(a^2-ab+b^2)=2(x^2+y^2)(a^2-ab+b^2)\vdots x^2+y^2\)

Ta có đpcm.

20 tháng 5 2017
Ta có: (x+y)^6 +(x-y)^6= ((x+y)^2)^3+((x-y)^2)^3 Mà ((x+y)^2)^3+((x-y)^2)^3 chia hết cho (x+y)^2+(x-y)^2 Mặt khác (x+y)^2+(x-y)^2=X^2+2xy+y^2+x^2-2xy+y^2=2x^2+2y^2=2*(x^2+y^2) Từ đó suy ra (x+y)^6+(x-y)^6 chia hết cho x^2+y^2
24 tháng 10 2017

\(\left(x+y\right)^6+\left(x-y\right)^6\)

\(=\left[\left(x+y\right)^2\right]^3+\left[\left(x-y\right)^2\right]^3\)

\(=\left[\left(x+y\right)^2+\left(x-y\right)^2\right]\left[\left(x+y\right)^4-\left(x+y\right)\left(x-y\right)+\left(x+y\right)^4\right]\)

\(=\left(2x^2+2y^2\right)\left[\left(x+y\right)^4-\left(x+y\right)\left(x-y\right)+\left(x+y\right)^4\right]\)

\(=2\left(x^2+y^2\right)\left[\left(x+y\right)^4-\left(x+y\right)\left(x-y\right)+\left(x+y\right)^4\right]\)

Ta có: (x2+y2) \(⋮\) x2 + y2

=> \(2\left(x^2+y^2\right)\left[\left(x+y\right)^4-\left(x+y\right)\left(x-y\right)+\left(x+y\right)^4\right]\) \(⋮\) \(x^2+y^2\)

30 tháng 5 2015

A=(x+y)(x+2y)(x+3y)(x+4y)+y4

A=(x+y)(x+4y).(x+2y)(x+3y)+y4

A=(x2+5xy+4y2)(x2+5xy+6y2)+y4

A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4

A=(x2+5xy+5y2)2-y4+y4

A=(x2+5xy+5y2)2

Do x,y,Z nen x2+5xy+5y2 Z

​A là số chính phương 

30 tháng 5 2015

a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4

                = (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2 
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z thuộc Z nên xthuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5ythuộc  Z
Vậy A là số chính phương.