Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có: f(x)= x2-10x+27 = (x-5)2+2>0
=> pt vô nghiệm
b, g(x)=x2+(2/3)x+4/9=x2+2.(1/3).x+1/9+1/3
= (x+1/3)2+1/3>0
=> pt vô nghiệm.
\(a,f\left(x\right)=x^2-10x+27\)
\(\Rightarrow f\left(x\right)=x^2-5x-5x+25+2\)
\(\Rightarrow f\left(x\right)=x\left(x-5\right)-5\left(x-5\right)+2\)
\(\Rightarrow f\left(x\right)=\left(x-5\right)^2+2\ge2>0\) (Vì \(\left(x-5\right)^2\ge0\) \(Vx\) )
Vậy đa thức f(x) vô nghiệm
\(b,g\left(x\right)=x^2+\frac{2}{3}x+\frac{4}{9}\)
\(\Rightarrow g\left(x\right)=x^2+\frac{1}{3}x+\frac{1}{3}x+\frac{1}{9}+\frac{3}{9}\)
\(\Rightarrow g\left(x\right)=x\left(x+\frac{1}{3}\right)+\frac{1}{3}\left(x+\frac{1}{3}\right)+\frac{1}{3}\)
\(\Rightarrow g\left(x\right)=\left(x+\frac{1}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}>0\) (Vì \(\left(x+\frac{1}{3}\right)^2\ge0\) \(Vx\) )
Vậy đa thức g(x) vô nghiệm
Ta xét 3 khoảng giá trị:
+) Nếu \(x\le0\)thì \(x^8\ge x^5;x^2\ge x\)(dễ thấy)
\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)
\(\Rightarrow f\left(x\right)\ge1>0\)
Ở khoảng này f(x) vô nghiệm.
+) Nếu \(0< x< 1\)
Ta có: \(f\left(x\right)=1-\left[x^5-x^8+x-x^2\right]\)
\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]\)
Vì 0 < x < 1 nên \(x^5,1-x^3>0\)
Áp dụng bđt Cauchy, ta được:
\(\sqrt{x^5\left(1-x^3\right)}\le\frac{x^5+1-x^3}{2}\)
\(\Rightarrow x^5\left(1-x^3\right)\le\left(\frac{x^5+1-x^3}{2}\right)^2\)
Tương tự ta có: \(x\left(1-x\right)\le\left(\frac{x+1-x}{2}\right)^2=\frac{1}{4}\)
Lúc đó \(x^5\left(1-x^3\right)+x\left(1-x\right)\le\left(\frac{1-\left(x^3-x^5\right)}{2}\right)^2+\frac{1}{4}\)
\(< \frac{1}{4}+\frac{1}{4}=\frac{1}{2}< 1\)(do x3 > x5 vì 0 < x < 1)
\(=1-\left[x^5\left(1-x^3\right)+x\left(1-x\right)\right]>0\)
Ở khoảng này đa thức cũng vô nghiệm.
+) Nếu \(x\ge0\)thì \(x^8\ge x^5;x^2\ge x\)
\(\Rightarrow x^8-x^5\ge0;x^2-x\ge0\)
\(\Rightarrow f\left(x\right)\ge1>0\)
Ở khoảng này đa thức cũng vô nghiệm.
Vậy đa thức f(x) vô nghiệm
Ta có :
\(x^4\ge0\)
\(x^2\ge0\)
mà \(x^4>x^2\)=> \(x^4-x^2\ge0\)=> \(x^4-x^2+1\ge1\)
Hay f(x) \(\ge\)0 => f(x) ko có nghiệm ( đpcm )
Dễ lắm
f(x) có nghiệm <=>f(x)=0
Ta có; \(^{x^4}\) \(\)lớn hơn hoặc bằng 0 với mọi x
nên x4+5/2+6>0 với mọi x (vô nghiệm)
Vậy f(x) vô nghiệm
Nhớ ghi thành kí hiệu toán nha ở đây minh ko bt đánh
Ta có: x2+x+x+1+4 \(\leftrightarrow\) (x2+x)+(x+1)+4 \(\leftrightarrow\) x.(x+1)+(x+1)+4 \(\leftrightarrow\) (x+1).(x+1)+4\(\leftrightarrow\) (x+1)2+4 Vì (x+1)2 luôn >hoặc = 0 \(\Rightarrow\) (x+1)2+4 luôn > hoặc = 4 Vậy đa thức vô nghiệm
Hồi cô dạy mình vì mũ 2 mà cộng nữa chắn chắn sẽ lớn hơn 0
jfksgdksdbgkj
Đề sai rồi bạn
Đa thức vẫn có nghiệm là 1
16-15+14-13+12-1=0
Kiểm tra lại đề nhé
\(C\left(x\right)=\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}\)
\(\frac{4x-3}{6}-\frac{5-3x}{3}+\frac{1}{3}=0\)
\(4x-3-2\left(5-3x\right)+2=0\)
\(4x-1-2\left(5-3x\right)=0\)
\(4x-1-10+6x=0\)
\(10x-11=0\)
\(10x=0+11\)
\(10x=11\)
\(x=\frac{11}{10}\)
a, Ta có: \(x^2\ge0\Rightarrow x^2+4\ge4>0\)
Vậy đa thức vô nghiệm
b, \(x^2+2x+2=x^2+x+x+2=x\left(x+1\right)+\left(x+1\right)+1=\left(x+1\right)\left(x+1\right)+1=\left(x+1\right)^2+1\)
Mà \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+1\ge1>0\)
Vậy...
d, \(x^2-6x+10=x^2-3x-3x+10=x\left(x-3\right)-3\left(x-3\right)+1=\left(x-3\right)^2+1\)
Mà \(\left(x-3\right)^2\ge0\Rightarrow\left(x-3\right)^2+1\ge1>0\)
Vậy..
có \(x^4+x^2\ge0\)
=> đa thức trên <0
=> đt trên vô nghiệm
chú ý: đây là toán lớp 8 mà