K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2017

P(x)=\(2x^2+2x+1\)

ta có :\(2x^2+2x\ge0\)

nên \(2x^2+2x+1\ge1\)

zì zậy vô nghiệm

P(x) = 2 x2 + 2x +1

 ta có : 2x2 + 2x > 0

nên 2 x2 + 2x +1>1

 chúc bạn thi tốt

12 tháng 4 2016

bài 1:

a) C= 0

hay 3x+5+(7-x)=0

3x+(7-x)=-5

với 3x=-5

x= -5:3= \(x = { {-5} \over 3}\)

với 7-x=-5

x= 7+5= 12

=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12

mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha

12 tháng 4 2016

EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

10 tháng 7 2020

\(\left(x+1\right)^2=x^2+2\cdot x\cdot1+1^2=x^2+2x+1=VP\left(đpcm\right)\)

\(P\left(x\right)=x^2+2x+4\)

\(\Delta=b^2-4ac=2^2-4\cdot1\cdot4=4-16=-12\)

\(\Delta< 0\)=> Đa thức vô nghiệm ( đpcm ) 

\(\left(x+1\right)^2=\left(x+1\right)\left(x+1\right)=x^2+x+x+1=x^2+2x+1\)

=>  \(x^2+2x+1=x^2+2x+1\left(\text{đ}pcm\right)\)

Ta có : \(P\left(x\right)=x^2+2x+4=0\)

\(\hept{\begin{cases}x^2\ge0\\2x\ge0\\4>0\end{cases}\Rightarrow vonghiem}\)

7 tháng 5 2017

 DO x^4;3x^2 lớn hơn hoặc = 0( bn tự viết dấu) vs mọi x => x^4 + 3x^2 + 3 lớn hơn hoặc = 0 vs mọi x => P(x) = ... vô nghiệm

23 tháng 6 2020

??

\(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}}\)\(\Rightarrow2x^4+x^2\ge0\)\(\Rightarrow2x^4+x^2+2\ge2>0\)

Dấu "=" khi x=0

Vậy đa thức đã cho không có nghiệm

23 tháng 6 2020

2x4 + x2 + 2

Có : \(\hept{\begin{cases}2x^4\ge0\\x^2\ge0\end{cases}\forall x\Rightarrow}2x^4+x^2+2\ge2>0\forall x\)

=> Đa thức vô nghiệm 

7 tháng 8 2019

a) f(x) = x(x - 5) + 2(x - 5)

x(x - 5) + 2(x - 5) = 0

<=> (x - 5)(x - 2) = 0

        x - 5 = 0 hoặc x - 2 = 0

        x = 0 + 5         x = 0 + 2

        x = 5               x = 2

=> x = 5 hoặc x = 2

a,   f(x) có nghiệm 

\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)

->tự kết luận.

b1, để g(x) có nghiệm thì:

\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)

\(\Rightarrow2x^2-4x-x^2+5+4x=0\)

\(\Rightarrow x^2+5=0\)

Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)

suy ra: k tồn tại \(x^2+5=0\)

Vậy:.....

b2, 

\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)

\(=x^2-5x+2x-10\)

\(=x^2-3x-10\)

\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)

\(=x^2+5-x^2+3x-10=3x-5\)

24 tháng 4 2016

Giả sử đa thức P(x) tồn tại một nghiệm n nào đó thỏa mãn ( n là số thực)

Khi đó: P(x) = x2 -2x + 2=0

           x.x- x-x +2=0

          x(x-1) - (x-1) +1 = 0

           (x-1)(x-1) = -1

=> (x-1)2 = -1 mà (x-1)2 luôn  \(\ge\) 0 với mọi x (vô lí)

Vậy điều giả sử là sai, đa thức P(x) vô nghiệm

24 tháng 4 2016

vô nghiệm nha