Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
F(x) = 1 + x2 + x4 + x6 + ... + x2018 + x2020
Ta có : \(x^2\ge0\forall x\)
\(x^4\ge0\forall x\)
\(x^6\ge0\forall x\)
...
\(x^{2020}\ge0\forall x\)
\(1>0\)
=> F(x) = \(1+x^2+x^4+x^6+...+x^{2018}+x^{2020}\ge1>0\)
=> F(x) vô nghiệm ( đpcm )
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
Ta có:
3\(x^6\)\(\ge\)0 với mọi x
2\(x^4\)\(\ge\)0 với mọi x
\(x^2\)\(\ge\)0 với mọi x
=> f(x)=3\(x^6\)+2\(x^4\)+\(x^2\)+1 \(\ge\)0+0+0+1\(\ge\)1 với mọi x
Vậy f(x) không co nghiệm
\(\left(x+1\right)^2=x^2+2\cdot x\cdot1+1^2=x^2+2x+1=VP\left(đpcm\right)\)
\(P\left(x\right)=x^2+2x+4\)
\(\Delta=b^2-4ac=2^2-4\cdot1\cdot4=4-16=-12\)
\(\Delta< 0\)=> Đa thức vô nghiệm ( đpcm )
\(\left(x+1\right)^2=\left(x+1\right)\left(x+1\right)=x^2+x+x+1=x^2+2x+1\)
=> \(x^2+2x+1=x^2+2x+1\left(\text{đ}pcm\right)\)
Ta có : \(P\left(x\right)=x^2+2x+4=0\)
\(\hept{\begin{cases}x^2\ge0\\2x\ge0\\4>0\end{cases}\Rightarrow vonghiem}\)
1)
a) Tìm nghiệm của đa thức $f(x) = 4x - x^2$
Cho $f(x) = 0$
$⇒ 4x - x^2 = 0$
$⇒ x(4 - x) = 0$
$⇒ x = 0$ hoặc $4 - x = 0$
$⇒ x = 0$ hoặc $x = 4$
Vậy nghiệm của đa thức là $x = 0$ và $x = 4$
a) Nghiệm là 0
b)Vì \(x^2\) ≥ 0
\(x^4\) ≥ 0
1>0
nên \(x^2\) +\(x^4\) +1 >0
⇒f(x)= \(x^2\) +\(x^4\) +1 ko có nghiệm
Ta có :
\(x^4\ge0\)
\(x^2\ge0\)
mà \(x^4>x^2\)=> \(x^4-x^2\ge0\)=> \(x^4-x^2+1\ge1\)
Hay f(x) \(\ge\)0 => f(x) ko có nghiệm ( đpcm )