K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2018

theo đề bài ta có

x^2-x-2

=x^2-2x1/2+1/4-1/4+2

=(x^2-2x1/2+1/4)+(2-1/4)

=(x-1/2)^2+7/4

vì (x-1/2)^2>0

=>(x-1/2)^2+7/4>7/4

vậy đa thức này trong phép chia luôn dương với mọi x

7 tháng 11 2018

ok không??????

13 tháng 10 2017

x2 -x + 2 = x2 - 2x.\(\frac{1}{2}\) + \(\frac{1}{4}\) +\(\frac{7}{4}\)

              = (x -\(\frac{1}{2}\) )2  + \(\frac{7}{4}\)

13 tháng 10 2017

Mọi người giúp mình với 🙂🙂🙂

5 tháng 12 2016

a)2x(2x+7)=4(2x+7)

    2x(2x+7)-4(2x+7)=0

    (2x+7)(2x-4)=0

\(\Rightarrow\orbr{\begin{cases}2x+7=0\\2x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-\frac{7}{2}\\x=2\end{cases}}\)

5 tháng 12 2016

b)Ta có:x3-4x2+ax=x3-3x2-x2+ax

                           =x2(x-3)-x(x-a)

          Để x3-4x2+ax chia hết cho x-3 thì a=3

6 tháng 7 2016

\(1,x^2-x+1=x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0=>\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\) (với mọi x)

Vậy ........

\(2,a,\left(x-3\right)\left(1-x\right)-2=x-x^2-3+3x-2=-x^2+4x-5=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-4x+4+1\right)=-\left(x^2-2.x.2+2^2+1\right)=-\left[\left(x-2\right)^2+1\right]=-1-\left(x-2\right)^2\)

\(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>-1-\left(x-2\right)^2\le-1< 0\) (với mọi x)

Vậy........

\(b,\left(x+4\right)\left(2-x\right)-10=2x-x^2+8-4x-10=-x^2-2x-2=-\left(x^2+2x+2\right)=-\left(x^2+2x+1+1\right)\)

\(=-\left(x^2+2.x.1+1^2+1\right)=-\left(x+1\right)^2+1=-1-\left(x+1\right)^2\le-1< 0\) (với mọi x)

Vậy.......

23 tháng 7 2017

\(Q=x^2+x+1\)

\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

Vậy đa thức luôn dương với mọi giá trị của x.

23 tháng 7 2017

Q = x2 + x + 1 = x2 + 2. \(\dfrac{1}{2}\) x + \(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)
= ( x + \(\dfrac{1}{2}\) )2 + \(\dfrac{3}{4}\)
Vì ( x + \(\dfrac{1}{2}\) )2 >\(\) 0 => Q >0 với mọi x

1 tháng 11 2018

\(a,\left(x+1\right)^2+2x\left(x-2\right)=3\left(x+4\right)\left(x+1\right)\)

\(x^2+2x+1+2x^2-4x=3\left(x^2+5x+4\right)\)

\(3x^2-2x+1=3x^2+15x+12\)

\(\Rightarrow3x^2-2x+1-3x^2-15x-12=0\)

\(\Rightarrow-17x=11\)

\(\Rightarrow x=-\frac{11}{17}\)

\(b,M=x^2+12x+50\)

\(M=x^2+2.6.x+6^2+14\)

\(M=\left(x+6\right)^2+14\ge14>0\)

=> M luôn dương 

1 tháng 11 2018

\(\left(x+1\right)^2+2x\left(x-2\right)=3\left(x+4\right)\left(x+1\right).\)

\(\Leftrightarrow x^2+2x+1+2x^2-4x=3.(x^2+x+4x+4)\)

\(\Leftrightarrow x^2-2x+2x^2+1=3x^2+15x+12\)

\(\left(x^2-3x^2+2x^2\right)=\left(15x+2x\right)+12-1\)

\(17x+11=0\)

\(\Leftrightarrow x=\frac{-11}{17}\)

19 tháng 8 2020

+) \(A=x\left(x-6\right)+10\)

\(A=x^2-6x+10\)

\(A=x^2-6x+9+1\)

\(A=\left(x-3\right)^2+1\ge1\)

Vậy.....

+) \(B=x^2-2x+9y^2-6y+3\)

\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)

\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)

Vậy .....

19 tháng 8 2020

thanks bạn nhìu

13 tháng 8 2018

a)

\(A=x^2-4x+18=\left(x^2-4x+4\right)+14=\left(x-2\right)^2+14\ge14>0\)

\(B=x^2-x+2=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{7}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\ge\dfrac{7}{4}>0\)

\(C=x^2-2xy+2y^2-2y+15\)

\(C=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+14\)

\(C=\left(x-y\right)^2+\left(y-1\right)^2+14\ge14>0\)

6 tháng 7 2017

Ta có : C = 4x2 + 4y2 - 8x + 4y + 427

=> C = (4x2 - 8x + 4) + (4y2 + 4y + 1) + 422

=> C = (2x - 2)2 + (2y + 1)2 + 422

Mà \(\left(2x-2\right)^2\ge0\forall x\)

       \(\left(2y+1\right)^2\ge0\forall x\)

Nên C = (2x - 2)2 + (2y + 1)2 + 422  \(\ge422\forall x\)

Suy ra : C = (2x - 2)2 + (2y + 1)2 + 422 \(>0\forall x\)

Vậy C luôn luôn dương (đpcm)

15 tháng 9 2019

\(x^2-6x+10\)

\(=x^2-6x+9+1\)

\(=\left(x-3\right)^2+1\ge1\forall x\)

Mà 1>0 

\(\Rightarrow x^2-6x+10\) luôn dương \(\forall x\left(đpcm\right)\)