Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số nguyên tố chia 4 sẽ dư 1 hoặc 3. Ta đã chứng minh được có vô số số nguyên tố. Mà số nguyên tố cũng ko thể tồn tại tất cả ở dạng 4k+3 được. Do đó cũng có vô số số nguyên tố tồng tại ở dạng 4k+1
Mỗi số tự nhiên n khi chia cho 4 có thể có 1 trong các số dư: 0; 1; 2; 3. Do đó mọi số tự nhiên n đều có thể viết được dưới 1 trong 4 dạng: 4k, 4k + 1, 4k + 2, 4k + 3
Với k N*.
- Nếu n = 4k thi n là hợp số.
- Nếu n = 4k + 2 thi n là hợp số.
Vậy mọi số nguyên tố lớn hơn 2 đều có dạng 4k + 1 hoặc 4k +3. Hay mọi số nguyên tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n +3 với n N*.
Cái này chỉ là xem xét các trường hợp có thể của p thôi
Ta có nhận xét:Với p là số tự nhiên thì p chỉ có thể có dạng p=4k;4k+1;4k+2;4k+3
Mà vì p là số nguyên tố lớn hơn 3 nên p không là số chẵn,ta loại 2 dạng p=4k và 4k+2
Vậy p chỉ viết được dưới dạng 4k+1 và 4k+3
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!