Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo đề bài ta có x = \(\frac{a}{m}\), y = \(\frac{b}{m}\) (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = \(\frac{2a}{2m}\), y = \(\frac{2b}{2m}\); z = \(\frac{a+b}{2m}\)
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) suy ra x < y < z
hoặc tham khảo ở http://lazi.vn/edu/exercise/gia-su-x-a-m-y-b-m-a-b-m-z-b-0-va-x-y-hay-chung-to-rang-neu-chon-z-a-b-2m-thi-ta-co-x-z-y
b) Ta có:
\(\frac{1}{2}< \frac{2}{2}< \frac{3}{2}< \frac{4}{2}< \frac{5}{2}\)
\(\Rightarrow\) 3 phân số nằm giữa \(\frac{1}{2}\) và \(\frac{5}{2}\) là \(\frac{2}{2};\frac{3}{2};\frac{4}{2}\)
bài này trong SGK lớp 7 đơn giản mà bạn
Giải
Theo đề bài: \(x=\frac{a}{m}\),\(y=\frac{b}{m}\)\(\left(a,b,m\in Z,\ne0\right)\)
Vì \(x< y\) nên \(a< b\)
Ta có: \(x=\frac{2a}{2m}\),\(y=\frac{2b}{2m}\),\(z=\frac{a+b}{2m}\)
a < b nên a + a < a + b hay \(2a< a+b\) ( 1 )
a < b nên a + b < b + b hay \(a+b< 2b\) ( 2 )
Từ ( 1 ) và ( 2 ) ta có 2a < a + b < 2b.
\(\Rightarrow\) \(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)hay \(x< y< z\)
♥♥♥ Ủng hộ cho mk nha ♥♥♥
Vì x<y
=> \(\frac{a}{m}< \frac{b}{m}\)
=> a<b
x= \(\frac{a}{m};z=\frac{a+b}{2m}\)
=> x=\(\frac{2a}{2m}< \frac{a+b}{2m}\)=z
=> 2a<a+b
=> x<z
mặt khác z<y nên
=> z=\(\frac{a+b}{2m}< \frac{b}{m}\)=y
=>\(\frac{a+b}{2m}< \frac{2b}{2m}\)
=> a+b< 2b
=> z<y
=> x<z<y hay \(\frac{a}{m}< \frac{b}{m}< \frac{a+b}{2m}\)
cậu tra trên google ấy , **** tớ cái nha !
nếu ko thấy trên googlle thì để tớ giúp nhưng cậu phải **** cho tớ đã
1) Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0
- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0
Tổng quát: Số hữu tỉ \(\frac{a}{b}\) ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y