Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tớ chỉ làm cho cậu 1 cái thôi, còn lại cậu tự giải tương tự
Đặt d= ƯCLN (2n+1, 2n+3)
\(\Rightarrow2n+1⋮d\) và\(3n+2⋮d\)
=>\(3\left(2n+1\right)⋮d\) và\(2\left(3n+2\right)⋮d\)
\(\Rightarrow6n+3⋮d\) và\(6n+4⋮d\)
=>6n+4 - (6n+3) \(⋮d\)
=>\(1⋮d\)
=>d=1
Vậy cặp số trên nguyên tố cùng nhau với mọi STN n
a) Gọi d là ƯCLN (n+1,3n+4), d thuộc N*
\(\Rightarrow\hept{\begin{cases}n+1⋮d\\3n+4⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n+1\right)⋮d\\3n+4⋮d\end{cases}\Rightarrow}\hept{\begin{cases}3n+3⋮d\\3n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(3n+4\right)-\left(3n+3\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(n+1,3n+4\right)=1\)
Vậy n+1 và 3n+4 là hai số nguyên tố cùng nhau.
b) Gọi d là ƯCLN(2n+3,4n+8), d thuộc N*
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+8⋮d\end{cases}\Rightarrow}\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow\)d bằng 1 hoặc d bằng 2
Mà 2n+3 không chia hết cho 2 \(\Rightarrow d=1\)
\(\RightarrowƯCLN\left(2n+3,4n+8\right)=1\)
Vậy 2n+3 và 4n+8 là hai số nguyên tố cùng nhau.
Gọi UCLN(2n + 3; 4n + 8) là d
=> 2n + 3 chia hết cho d => 4n + 6 chia hết cho d
4n + 8chia hết cho d => 4n + 6 + 2 chia hét cho d
=> 2 chia hết cho d
=> d thuộc {1; 2}
Mà 2n + 3 lẻ => d lẻ => d = 1
=> UCLN(2n + 3; 4n + 8) = 1
Vậy...
Gọi d là ƯCLN(4n + 5; 2n + 2)
⇒ (4n + 5) ⋮ d
(2n + 2) ⋮ d ⇒ 2(2n + 2) ⋮ d ⇒ (4n + 4) ⋮ d
⇒ [(4n + 5) - (4n + 4)] ⋮ d
⇒ (4n + 5 - 4n - 4) ⋮ d
⇒ 1 ⋮ d
⇒ d = 1
Vậy 4n + 5 và 2n + 2 là hai số nguyên tố cùng nhau
Gọi ước chung lớn nhất của 4n + 5 và 2n + 2 là: d
Ta có: 4n + 5 ⋮ d
2n + 2 ⋮ d
⇒ 2.(2n+ 2) ⋮ d ⇒ 4n + 4 ⋮ d
⇒ 4n + 5 - (4n + 4) ⋮ d
4n + 5 - 4n - 4 ⋮ d
1 ⋮ d ⇒ d = 1
Ước chung lớn nhất của 4n + 5 và 2n + 2 là 1
Hay 4n + 5 và 2n + 2 là hai số nguyên tố cùng nhau
Goi d là ƯCLN ( 2n + 3 ; 4n + 8 )
\(\Rightarrow\) 2n + 3 và 4n + 8 chia hết cho d
\(\Rightarrow\) 2 . ( 2n + 3 ) chia hết cho d
1 . ( 4n + 8 ) chia hết cho d
\(\Rightarrow\) 4n + 6 chia hết cho d
4n + 8 chia hết cho d
\(\Rightarrow\) 4n + 8 - ( 4n + 6 ) chia hết cho d
4n + 8 - ( 4n - 6 ) chia hết cho d
Suy ra 2 chia hết cho d .
d € Ư ( 2 ) = { 1 ; 2 }
Mà 2n + 3 không chia hết cho 2 . Suy ra d = 1
\(\Rightarrow\) ƯCLN ( 2n + 3 ; 3n + 4 ) = 1
Vậy 2n + 3 và 3n + 4 là 2 số nguyên tố cùng nhau .
4n+8=2(2n+4)
2n+3,2n+4 ng tố cùng nhau 2 stn liên tiếp
k mình nha
gọi \(ƯCLN\left(2n+3;4n+8\right)=d\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}\Rightarrow\left(4n+8\right)-2\left(2n+3\right)⋮d\Rightarrow2⋮d}\)
\(\Rightarrow d=\left\{1;2\right\}\)
mà 2n+3 là số lẻ; 4n+8 là số chẵn nên d=1 => hai số nguyên tố cùng nhau
Câu trả lời hay nhất: Gọi d = (12n + 1 , 30n + 2)
=> 12n + 1 chia hết cho d và 30n + 2 chia hết cho d
=> 5(12n + 1) - 2(30n + 2) chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 12n + 1 và 30n + 2 là hai số nguyên tố cùng nhau
Đặt `(2n+5,4n+8)=d(d\ne0;d\inZZ)`
`=>{(2n+5\vdots d),(4n+8\vdots d):}`
`=>{(4n+10\vdots d),(4n+8\vdots d):}`
`=>(4n+10)-(4n+8)\vdots d`
`<=>2\vdots d`
mà `2n+5` lẻ nên `d` lẻ suy ra `d=+-1`
Suy ra `2n+5` và `4n+8` nguyên tố cùng nhau.
tài năng mới của hoc24 đay r =))
gắng lênnnn