\(\in\)N*) không thể là số chính phương

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ta thấy n^2<n(n+1)<n(n+2)<(n+1)^2

mà n^2 và(n+1)^2 là 2 scp liên tiếp, mà giữa 2 scp liên tiếp ko có sô chính phương nào nên n(n+1) và n(n+2) ko là scp

tick nha

16 tháng 6 2015

Đặt  B = 10n + 10n-1 + ...+ 10 + 1

=> 10.B = 10n+1 + 10n + ...+ 102 + 10

=> 10B - B = 10n+1 -1

=> 9B = 10n+1 - 1

Ta có: 9A = 9B. (10n+1 + 5) + 9 = (10n+1 -1).(10n+1 + 5) + 9

9A = (10n+1)2 + 5.10n+1 - 10n+1 - 5 + 9 = (10n+1)2 + 4.10n+1 + 4

=  (10n+1 + 2)2

=> A = \(\left(\frac{10^{n+1}+2}{3}\right)^2\)

Vì (10n+1 + 2 ) chia hết cho 3 nên \(\left(\frac{10^{n+1}+2}{3}\right)^2\) là số chính phương

=> A là số chính phương

16 tháng 6 2015

Ta có công thức: an-1=(a-1)(an-1+an-2+...+a+1)

Từ đó suy ra:

A=\(\frac{10^{n+1}-1}{9}\left(10^{n+1}+5\right)+1\)

Đặt 10n+1=B => A=\(\frac{\left(B-1\right)}{9}\left(B+5\right)+1\)

=> A=\(\frac{\left(B-1\right)\left(B+5\right)+9}{9}\)

       = \(\frac{B^2+4B+4}{9}\)

       = \(\left(\frac{B+2}{3}\right)^2\)Hay \(\left(\frac{100...02_{\left\{n\right\}}}{3}\right)^2\)

       = 333...342

Vậy A là số chính phương. (1)

Gỉa sử A=m3, m thuộc N

=> 333...34{n số 3} = m3

=> m3 chia hết cho 2

=> m chia hết cho 2

=>  m3 chia hết cho 8          Hay         (2.1666..67{n-1 số 6} )2 chia hết cho 8

=>4.1666..672{n-1 số 6} chia hết cho 8   

=>1666..67chia hết cho 2 (Vô Lý)

Vậy A ko thể là lập phương của 1 số tự nhiên.       (2)

Từ (1) và (2) => ĐPCM

 

 

7 tháng 6 2017

Giả sử: n+1=a2

2n+1=b2

Vì 2n+1 lẻ

=> b2:8 dư 1

=> 2n \(⋮\)8

=> n chẵn

=> a2:8 dư 1

=> n

7 tháng 6 2017

GS: n+1= a2

2n+1=b2

=>2n chia hết cho 8

=> n chẵn

=> a2 chia 8 dư 1

=> n chia hết cho 8

a2+b2=3n+2

Vì số chính phương chia 3 dư 0 hoặc 1

Mà 3n+2 chia 3 dư 2

=> b2 và a2 chia 3 dư 1

=> n chia hết cho 3

Mà [3,8]=1=> n chia hết cho 24

28 tháng 9 2015

A = 1 + 2.1 + 3.2.1 + 4.3.2.1 + 5! + ...+ n! = 33 + 5! + ...+ n!

Nhận xét: Từ 5! trở đi mỗi số hạng đều tận cùng là 0 (Vì chứa 5.2 = 10) => A có tận cùng là 3

=> A không thể là số chính phương

17 tháng 6 2015

A = n4.(n2 - 1) + 2n2.(n+1) = n4.(n+1).(n-1) + 2n2.(n + 1) = n2(n + 1). (n2.(n -1) + 2)

=  n2(n + 1).(n3 - n2 + 2) =  n2(n + 1).(n3 + 1 + 1 - n2) =  n2(n + 1).(n +1). (n2 - n + 1 - n + 1) =  n2( n + 1)2.(n2 - 2n + 2)

Với n > 1 => n2 - 2n +  1 < n2 - 2n + 2 < n2 

               => (n - 1)2 < n2 - 2n + 2 < n2  

(n - 1)2 ;  n2 là 2 số chính phương liên tiếp  => n2 - 2n + 2 không thể là số chính phương

=> A không là số chính phương

25 tháng 5 2020

mình ko biết

9 tháng 9 2017

Nếu n không chia hết cho 3\(\Rightarrow\)n2 không chia hết cho 3=>n2 chia 3 dư 1 hoặc 2.

-Nếu n2 chia 3 dư 1 =>n2 -1 chia hết cho 3.

-Nếu n2 chia 3 dư 2 =>n2+1 chia hết cho 3.

Vậy n2 -1 và n2+1 không thể đồng thời là hai số nguyên tố vì một trong hai số trên chia hết cho 3(đpcm)

15 tháng 3 2019

1.

    Không biết là đề sai hay đúng nhưng hình như không có số nào

2

   Ta có  : 88888888 (n số 8)

=> Tổng của 88888888..... (n số 8) = 8n

   8n - 9 + n

= 9n - 9

= 9.(n-1) 

=> 88888888..... (n số 8) - 9 + n chia hết cho 9

3.

Tổng của các chữ số đó là 

(1.2012) + 4 + (3.2012)

=2012 + 4 + 6036

=8052

Mà 8052 chia hết cho 2

=> 1111111111111111111...(2012 chữ số 1)43333333333333333333...(2012 chữ số 3) là hợp số