Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt B = 10n + 10n-1 + ...+ 10 + 1
=> 10.B = 10n+1 + 10n + ...+ 102 + 10
=> 10B - B = 10n+1 -1
=> 9B = 10n+1 - 1
Ta có: 9A = 9B. (10n+1 + 5) + 9 = (10n+1 -1).(10n+1 + 5) + 9
9A = (10n+1)2 + 5.10n+1 - 10n+1 - 5 + 9 = (10n+1)2 + 4.10n+1 + 4
= (10n+1 + 2)2
=> A = \(\left(\frac{10^{n+1}+2}{3}\right)^2\)
Vì (10n+1 + 2 ) chia hết cho 3 nên \(\left(\frac{10^{n+1}+2}{3}\right)^2\) là số chính phương
=> A là số chính phương
Ta có công thức: an-1=(a-1)(an-1+an-2+...+a+1)
Từ đó suy ra:
A=\(\frac{10^{n+1}-1}{9}\left(10^{n+1}+5\right)+1\)
Đặt 10n+1=B => A=\(\frac{\left(B-1\right)}{9}\left(B+5\right)+1\)
=> A=\(\frac{\left(B-1\right)\left(B+5\right)+9}{9}\)
= \(\frac{B^2+4B+4}{9}\)
= \(\left(\frac{B+2}{3}\right)^2\)Hay \(\left(\frac{100...02_{\left\{n\right\}}}{3}\right)^2\)
= 333...342
Vậy A là số chính phương. (1)
Gỉa sử A=m3, m thuộc N
=> 333...34{n số 3} = m3
=> m3 chia hết cho 2
=> m chia hết cho 2
=> m3 chia hết cho 8 Hay (2.1666..67{n-1 số 6} )2 chia hết cho 8
=>4.1666..672{n-1 số 6} chia hết cho 8
=>1666..672 chia hết cho 2 (Vô Lý)
Vậy A ko thể là lập phương của 1 số tự nhiên. (2)
Từ (1) và (2) => ĐPCM
Giả sử: n+1=a2
2n+1=b2
Vì 2n+1 lẻ
=> b2:8 dư 1
=> 2n \(⋮\)8
=> n chẵn
=> a2:8 dư 1
=> n
GS: n+1= a2
2n+1=b2
=>2n chia hết cho 8
=> n chẵn
=> a2 chia 8 dư 1
=> n chia hết cho 8
a2+b2=3n+2
Vì số chính phương chia 3 dư 0 hoặc 1
Mà 3n+2 chia 3 dư 2
=> b2 và a2 chia 3 dư 1
=> n chia hết cho 3
Mà [3,8]=1=> n chia hết cho 24
A = 1 + 2.1 + 3.2.1 + 4.3.2.1 + 5! + ...+ n! = 33 + 5! + ...+ n!
Nhận xét: Từ 5! trở đi mỗi số hạng đều tận cùng là 0 (Vì chứa 5.2 = 10) => A có tận cùng là 3
=> A không thể là số chính phương
A = n4.(n2 - 1) + 2n2.(n+1) = n4.(n+1).(n-1) + 2n2.(n + 1) = n2(n + 1). (n2.(n -1) + 2)
= n2(n + 1).(n3 - n2 + 2) = n2(n + 1).(n3 + 1 + 1 - n2) = n2(n + 1).(n +1). (n2 - n + 1 - n + 1) = n2( n + 1)2.(n2 - 2n + 2)
Với n > 1 => n2 - 2n + 1 < n2 - 2n + 2 < n2
=> (n - 1)2 < n2 - 2n + 2 < n2
(n - 1)2 ; n2 là 2 số chính phương liên tiếp => n2 - 2n + 2 không thể là số chính phương
=> A không là số chính phương
Nếu n không chia hết cho 3\(\Rightarrow\)n2 không chia hết cho 3=>n2 chia 3 dư 1 hoặc 2.
-Nếu n2 chia 3 dư 1 =>n2 -1 chia hết cho 3.
-Nếu n2 chia 3 dư 2 =>n2+1 chia hết cho 3.
Vậy n2 -1 và n2+1 không thể đồng thời là hai số nguyên tố vì một trong hai số trên chia hết cho 3(đpcm)
1.
Không biết là đề sai hay đúng nhưng hình như không có số nào
2
Ta có : 88888888 (n số 8)
=> Tổng của 88888888..... (n số 8) = 8n
8n - 9 + n
= 9n - 9
= 9.(n-1)
=> 88888888..... (n số 8) - 9 + n chia hết cho 9
3.
Tổng của các chữ số đó là
(1.2012) + 4 + (3.2012)
=2012 + 4 + 6036
=8052
Mà 8052 chia hết cho 2
=> 1111111111111111111...(2012 chữ số 1)43333333333333333333...(2012 chữ số 3) là hợp số
ta thấy n^2<n(n+1)<n(n+2)<(n+1)^2
mà n^2 và(n+1)^2 là 2 scp liên tiếp, mà giữa 2 scp liên tiếp ko có sô chính phương nào nên n(n+1) và n(n+2) ko là scp
tick nha