Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
làm ko bt đúng hay sai:
giả sử 3^n+4 là scp=>3^n+4=a^2
mà 3 nâng lên lũy thừa bao nhiêu cũng có tận cùng là 1 số lẻ, mà số lẻ +số chẵn=SL nên a^2 là số lẻ, =>a là số lẻ
=>a có dạng 4k+1 hoặc a có dạng 4k+3
+) nếu a =4k+1 thì a^2=(4k+1)^2=(4k+1)(4k+1)=16k^2+8k+1=8m+1
+) nếu a=4k+3 thì a^2=(4k+3)^2=(4k+3)(4k+3)=16k^2+24k+9=8m+1
vậy a^2=8m+1(1)
mặt khác, nếu n chẵn thì 3^n+4=3^(2k)+4=9^k+4=(8+1)^k+4=8h+1+4=8h+5)(trái với 1)
nếu n lẻ thì n=2k+1=>3^n+4=3^(2k+1)+4=9^k.3+4=(8+1)^k.3+4=(8k+1).3+4=8h+1(trái với 1)
vậy 3^n+4 ko thể là scp
Lời giải:
Xét $n$ lẻ. Đặt $n=2k+1$ với $k$ tự nhiên.
Khi đó:
$3^n+4=3^{2k+1}+4\equiv (-1)^{2k+1}+4\equiv -1+4\equiv 3\pmod 4$
Xét $n$ chẵn. Đặt $n=2k$ với $k$ tự nhiên.
$3^n+4=3^{2k}+4=9^k+4\equiv 1^k+4\equiv 5\pmod 8$
Vậy $3^n+4$ chia $4$ dư $3$ hoặc chia $8$ dư $5$ với mọi $n$ tự nhiên.
$\Rightarrow 3^n+4$ không thể là số chính phương (do 1 scp chia 8 chỉ có thể có dư 0,1,4 và chia 4 chỉ có dư 0,1).
a) Với k chẵn, 19k chia cho 4 dư 1, 5k chia cho 4 dư 1, 1995k chia cho 4 dư 1, 1996k chia hết cho 4.
Do đó, với k chẵn thì M = 19k + 5k + 1995k + 1996k chia cho 4 dư 3. Suy ra M không là số chính phương.
b) N chia cho 4 dư 3 => N không là số chính phương
đề bài là như vậy phải ko: Chứng minh rằng với n là số tự nhiên lẻ thì n3+1 không thể là số chính phương?
giả sử
n^3 +1 = a^2 , a là số tự nhiên
=>n>a>0
=>n lớn hơn hoặc bằng a+1
=> a^2 = n^3 +1 lớn hơn hoặc bằng (a+1)^3 +1
=>a^3 + 2a^2 +3a +2 nhỏ hơn hoặc bằng không
=> a=0
=> n= -1 vô lí
=> đpcm
Ko hiểu, tại sao n>a vậy. Thấy từ dòng n^3+1=a^2 => n>a ko thấy hợp lí cho lắm vì n với a chả có mối quan hệ nào cả, nếu n=1 thì a=căn2, vậy a>n mới đúng chứ
a) Nếu n là số chính phương lẻ thì n = (2k + 1)2 = 4k2 + 4k + 1 = 4k(k+1) + 1
Ta thấy ngay k(k + 1) chia hết cho 2, vậy thì 4k(k + 1) chia hết cho 8.
Vậy n chia 8 dư 1.
b) Em tham khảo tại link dưới đây nhé.
Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath
vì 3 mũ bao nhiêu cũng là số lẻ mà số lẻ nào + với số chẵn cũng = số lẻ nên ko bao giờ bình phương của 1 số = số lẻ