Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tôi giải đúng ko các cậu?
Gọi d = ƯC (12n +1;30n +2).
Ta có: (12n +1) chia hết cho d và (30n + 2) chia hết cho d =>
5(12n +1) chia hết cho d và 2(30n + 2) chia hết cho d
[5(12n +1) – 2(30n +2)] chia hết cho d => 1 chia hết cho d => d = ± 1
=>$ \frac{12n+1}{30n+2}$ là phân số tối giản (n N*)
Hướng dẫn: Đặt (tử, mẫu)=d
Phương pháp: Tìm được d = 1.
Cách làm: Nhân tử với a, nhân mẫu với b (a, b là số nguyên) sao cho khi trừ đi 2 kết quả mới triệt tiêu được 2 biểu thức chứa n.
Cuối cùng sẽ tìm được 1 là bội của b => d=1
Còn lại cậu tự làm nhé!
Gọi d là : ƯCLN của : 12n + 1 và 30n + 2
Khi đó : 12n + 1 chia hết cho d , 30n + 2 chia hết cho d
<=> 5(12n + 1) chia hết cho d , 2(30n + 2) chia hết cho d
<=> 60n + 5 chia hết cho d , 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ƯCLN của 12n + 1 và 30n + 2 = 1
Do đó phân số \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\)
Gọi d là : ƯCLN của : 12n + 1 và 30n + 2
Khi đó : 12n + 1 chia hết cho d, 30n + 2 chia hết cho d
<=> 5(12n + 1) chia hết cho d, 2(30n + 2) chia hết cho d
<=> 60n + 5 chia hết cho d, 60n + 4 chia hết cho d
=> (60n + 5) - (60n + 4) chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy ƯCLN của 12n +1 và 30n +2 = 1
Do đó phân số : \(\frac{12n+1}{30n+2}\) tối giản \(\forall n\in Z\) .
Chúc bạn học tốt !
Đặt ƯCLN(3n-2;4n-3)=d => 3n-2 chia hết cho d và 4n-3 chia hết cho d
=>4(3n-2) chia hết cho d và 3(4n-3) chia hết cho d
=>12n-8 chia hết cho d và 12n-9 chia hết cho d
=>(12n-8)-(12n-9) chia hết cho d
=>1 chia hết cho d
=>d=1
ƯCLN(3n-2;4n-3)=1 => phân số \(\frac{3n-2}{4n-3}\) tối giản
Đặt ƯCLN(4n+1;6n+1)=m => 4n+1 chia hết cho m và 6n+1 chia hết cho m
=>3(4n+1) chia hết cho m và 2(6n+1) chia hết cho m
=>12n+3 chia hết cho m và 12n+2 chia hết cho m
=>(12n+3)-(12n+2) chia hết cho m
=>1 chia hết cho m
=>m=1
ƯCLN(3n-2;4n-3)=1 => phân số \(\frac{4n+1}{6n+1}\) tối giản
Đặt UCLN(12n + 1 ; 30n + 2) = d
12n + 1 chia hết cho d => 60n + 5 chia hết cho d
30n + 2 chia hết cho d => 60n + 4 chia hết cho d
UCLN(60n + 5 ; 60n + 4) = 1
=> d = 1
Vậy 12n + 1 / 30n + 2 luôn tối giản
Đặt d là ƯCLN(12n+1,30n+2)=>12n+1,30n+2 đều chia hết cho d=>60n+5 và 60n+4 chia hết cho d.Vì vậy nên ta có:
(60n+5)-(60n+4) chia hết cho d
=60n+5-60n-4 chia hết cho d
=1 chia hết cho d
=> d=1
Vì d=1 nên 12n+1,30n+2 là 2 số nguyên tố cùng nhau=>phân số trên là phân số tối giản(đpcm)
Gọi d là ƯCLN(5n+2;3n+1)
Ta có 5n+2\(⋮\)d;3n+1\(⋮\)d
=>3*(5n+2)\(⋮\)d;5*(3n+1)\(⋮\)d
=>15n+6\(⋮\)d;15n+5\(⋮\)d
=>[(15n+6)-(15n+5)]\(⋮\)d
=>[15n+6-15n-5]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(5n+2;3n+1)=1 nên phân số \(\frac{5n+2}{3n+1}\) luôn là phân số tối giản(nEN*)
a) ta chứng mk tử và mẫu là 2 số nguyên tố cùng nhau
mk làm mẫu 1 câu nha
Gọi d là UCLN(n+1;2n+3)
=>n+1 \(⋮\)<=>2(n+1)\(⋮\)d<=>4n+2 chia hết cho d
=>4n+3 chia hết cho d
=> 4n+3-4n-2 chia hết cho d
<=> 1 chia hết cho d=> d= 1
d=1=>\(\frac{n+1}{2n+3}\)tối giản
b) Gọi d là UCLN(2n+3;4n+8)
=>2n+3 \(⋮\)d<=>2(2n+3)\(⋮\)d<=> 4n+6 \(⋮\)d
=>4n+8\(⋮\)d
=>4n+8-4n-6\(⋮\)d<=>2 chia hết cho d=> d=1,2
mà 2n+3 là số lẻ nên ko có ước chẵn là 2=> d=1
vây \(\frac{2n+3}{4n+8}\)tối giản
a, Gọi d là ƯCLN\((12n+1,30n+2)\)\((d\inℕ^∗)\)
Ta có : \(\hept{\begin{cases}12n+1⋮d\\30n+2⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}5(12n+1)⋮d\\2(30n+2)⋮d\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}60n+5⋮d\\60n+4⋮d\end{cases}}\)
\(\Rightarrow(60n+5)-(60n+4)⋮d\)
\(\Rightarrow60n+5-60n-4⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy d = 1 để \(\frac{12n+1}{30n+2}\)là phân số tối giản với mọi số tự nhiên n
Câu b tự làm
\(b)\)\(3^{n+2}-2^{n+2}+3^n-2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)
\(=3^n\cdot\left(3^2+1\right)-2^n\cdot\left(2^2+1\right)\)
\(=3^n\cdot10-2^n\cdot5=3^n\cdot10-2^{n-1}\cdot10\)
\(=\left(3^n-2^{n-1}\right)\cdot10⋮10\left(ĐPCM\right)\)
b) d = ƯCLN (21n + 4; 14n + 3)
=> 21n + 4 chia hết cho d và 14n + 3 chia hết cho d
=> 2. (21n + 4) chia hết cho d và 3. (14n + 3) chia hết cho d
=> 42n + 8 và 42n + 9 chia hết cho d
=> (42n + 9) - (42n + 8) = 1 chia hết cho d => d = 1
=> 21n + 4 và 14n + 3 nguyên tố cùng nhau => PS đã cho tối giản
a) d= ƯCLN (3n + 1; 5n + 2)
=> 5n + 2 chia hết cho d và 3n + 1 chia hết cho d
=> 3. (5n + 2) chia hết cho d và 5. (3n + 1) chia hết cho d
=> 15n + 6 và 15n + 5 chia hết cho d
=> (15n + 6) - (15n + 5) = 1 chia hết cho d => d = 1
=> 3n + 1 và 5n + 2 nguyên tố cùng nhau => PS đã cho tối giản
b) d = ƯCLN (21n + 4; 14n + 3)
=> 21n + 4 chia hết cho d và 14n + 3 chia hết cho d
=> 2. (21n + 4) chia hết cho d và 3. (14n + 3) chia hết cho d
=> 42n + 8 và 42n + 9 chia hết cho d
=> (42n + 9) - (42n + 8) = 1 chia hết cho d => d = 1
=> 21n + 4 và 14n + 3 nguyên tố cùng nhau => PS đã cho tối giản