Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=4x^2-20x+27\)
\(A=\left(2x\right)^2-2\cdot2x\cdot5+25+2\)
\(A=\left(2x-5\right)^2+2\ge2>0\forall x\)
=> đpcm
b) \(B=x^2+x+1\)
\(B=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(B=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
=> đpcm
c) \(C=x^2+4x+y^2-6y+15\)
\(C=\left(x^2+4x+4\right)+\left(y^2-6y+9\right)+2\)
\(C=\left(x+2\right)^2+\left(y-3\right)^2+2\ge2>0\forall x;y\)
=> đpcm
Câu hỏi của ĐỖ THỊ HƯƠNG TRÀ - Toán lớp 8 - Học trực tuyến OLM
mình làm rồi nhé, bạn kham khảo link
\(x^2-6x+10\)
\(=x^2-2.x.3+9+1\)
\(=\left(x-3\right)^2+1>0\)
\(4x^2-20x+27\)
\(=\left(2x\right)^2-2.2x.5+25+2\)
\(=\left(2x-5\right)^2+2>0\)
\(x^2+x+1\)
\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
học tốt
a) A=x2 _ 6x + 10
<=> A=x2-6x+9+1
<=> A=(x-3)2+1 luôn dương với mọi x
b) B=4x2 _ 20x + 27
<=> 4x2-20x +25+2
<=> (2x-5)2+2 luôn dương với mọi x
c) C=x2 + x +1
<=> x2+2.x 1/2 + 1/4 +3/4
<=> (x+1/2)2+3/4 luôn dương với mọi x
a : x2 + 4x + 7 = (x + 2)2 + 3 > 0
b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0
c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0
d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0
e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0
f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0
A = x^2 - 2x.7/2 + 49 / 4 +3/4 =(x - 7/2)^ 2 +3/4 >0
B, Phá ngoặc sau làm tuwowg tự
C dua ve hằng đẳng thức
a) A= \(\left(x^2-2xy+y^2\right)+\left(x^2+10x+25\right)+x^2+1\)1
=\(\left(x-y\right)^2+\left(x+5\right)^2+x^2+1\ge1\)
\(\Rightarrow\)A dương với mọi x,y
\(a,A=4x^2-20x+27=\left(2x\right)^2-2.2x.5+5^2+2\)\(=\left(2x-5\right)^2+2\)
Mà \(\left(2x-5\right)^2\ge0\Rightarrow\left(2x-5\right)^2+2>0\Rightarrow A>0\)
\(b,B=x^2+x+1=x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+1\)\(=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}\)
Mà \(\left(x-\frac{1}{4}\right)^2\ge0\Rightarrow\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\Rightarrow B>0\)
\(c,C=x^2+4x+y^2-6y+15=x^2+4x+4+y^2-6y+9+2\)
\(\left(x+2\right)^2+\left(y-3\right)^2+2\)
Mà \(\left(x+2\right)^2+\left(y-3\right)^2\ge0\Rightarrow\left(x+2\right)^2+\left(y-3\right)^2+2>0\Rightarrow C>0\)