Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn kham khảo ở đây nha
Câu hỏi của Mimi - Toán lớp 8 | Học trực tuyến
vào thống kê hoie đáp của mình có chữ màu xanh trng câu hỏi này nhấn zô đó sẽ ra
hc tốt:~:B~
a) \(x^2-8x+2018=x^2-8x+16+2002=\left(x^2-8x+16\right)+2002=\left(x-4\right)^2+2002\)
Vì \(\left(x-4\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+2002\ge2002\)(Luôn Luôn Dương)
b)\(3x^2+6x+7=3x^2+6x+3+4=3\left(x^2+2x+1\right)+4=3\left(x+1\right)^2+4\)
Vì \(3\left(x+1\right)^2\ge0\)
\(\Rightarrow3\left(x+1\right)^2+4\ge4\)(Luôn Luôn Dương)
c)\(3x^2-6x+5=3x^2-6x+3+2=3\left(x^2-2x+1\right)+2=3\left(x-1\right)^2+2\)
Vì \(3\left(x-1\right)^2\ge0\)
\(\Rightarrow3\left(x-1\right)^2+2\ge2\)(Luôn Luôn Dương)
d)\(x^2-8x+19=x^2-8x+16+3=\left(x^2-8x+16\right)+3=\left(x-4\right)^2+3\)
Vì \(\left(x-4\right)^2\ge0\)
\(\Rightarrow\left(x-4\right)^2+3\ge3\)(Luôn Luôn Dương)
Ta có : x2 - x + 1
=.\(x^2+2x\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Mà \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)
Nên : \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Hay \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x
Ta có : x2 - 8x + 17
= x2 - 2.x.4 + 16 + 1
= (x - 4)2 + 1
Mà (x - 4)2 \(\ge0\forall x\)
Nên : (x - 4)2 + 1 \(\ge1\forall x\)
Hay (x - 4)2 + 1 \(>0\forall x\)\(>0\forall x\)
Vậy giá trị của biểu thức luôn luôn dương với mọi x
Ta có : C = 4x2 + 4y2 - 8x + 4y + 427
=> C = (4x2 - 8x + 4) + (4y2 + 4y + 1) + 422
=> C = (2x - 2)2 + (2y + 1)2 + 422
Mà \(\left(2x-2\right)^2\ge0\forall x\)
\(\left(2y+1\right)^2\ge0\forall x\)
Nên C = (2x - 2)2 + (2y + 1)2 + 422 \(\ge422\forall x\)
Suy ra : C = (2x - 2)2 + (2y + 1)2 + 422 \(>0\forall x\)
Vậy C luôn luôn dương (đpcm)
\(A=x^2+8x+17=x^2+8x+16+1=\left(x+4\right)^2+1>0\forall x\)
\(B=x^2-10x+29=x^2-10x+25+4=\left(x-5\right)^2+4>0\forall x\)
\(C=-x^2+2x-5=-\left(x^2-2x+5\right)=-\left(x^2-2x+1+4\right)\)
\(=-\left[\left(x-1\right)^2+4\right]=-\left(x-1\right)^2-4< 0\forall x\)
+) \(A=x\left(x-6\right)+10\)
\(A=x^2-6x+10\)
\(A=x^2-6x+9+1\)
\(A=\left(x-3\right)^2+1\ge1\)
Vậy.....
+) \(B=x^2-2x+9y^2-6y+3\)
\(B=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(B=\left(x-1\right)^2+\left(3y-1\right)^2+1\ge1\)
Vậy .....
\(B=-x^2-4x-7\)
\(-B=x^2+4x+7\)
\(-B=\left(x^2+4x+4\right)+3\)
\(-B=\left(x+2\right)^2+3\)
Mà \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow-B\ge3\)
\(\Leftrightarrow B\le3< 0\)
Vậy ...
Bài 1:
\(A=x^2+2x+2\)
\(A=x^2+2.x.1+1+1\)
\(A=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\) với mọi x
\(1>0\)
\(\Rightarrow\left(x+1\right)^2+1>0\) với mọi x
Vậy biểu thức trên có giá trị dương với mọi giá trị của x
Bài 2:
\(A=-x^2-2x-2\)
\(A=-\left(x^2+2x+2\right)\)
\(A=-\left(x^2+2x+1+1\right)\)
\(A=-\left(x^2+2x+1\right)-1\)
\(A=-\left(x+1\right)^2-1\)
Vì \(-\left(x+1\right)^2\le0\) với mọi x
\(-1< 0\)
\(\Rightarrow-\left(x+1\right)^2-1< 0\) với mọi x
Vậy biểu thức A có giá trị âm với mọi giá trị của x
\(B=-x^2-4x-7\)
\(B=-\left(x^2+4x+7\right)\)
\(B=-\left(x^2+2.x.2+4+3\right)\)
\(B=-\left(x^2+2.x.2+4\right)-3\)
\(B=-\left(x+2\right)^2-3\)
Vì \(-\left(x+2\right)^2\le0\) với mọi x
\(-3< 0\)
\(\Rightarrow-\left(x+2\right)^2-3< 0\) với mọi x
Vậy biểu thức B có giá trị âm với mọi giá trị của x
a, chỉ có luôn ko dương thôi bạn ạ =)))
\(3x-x^2-7=-\left(x^2-3x\right)-7=-\left(x^2-2.\frac{3}{2}+\frac{9}{4}-\frac{9}{4}\right)-7\)
\(=-\left(x-\frac{3}{2}\right)^2-\frac{19}{4}\le-\frac{19}{4}< 0\forall x\)
Vậy biểu thức trên luôn âm với mọi x
b, \(-x^2+6x-10=-\left(x^2-6x+9-9\right)-10=-\left(x-3\right)^2-1\le-1< 0\forall x\)
Vậy biểu thức trên luôn âm với mọi x
luôn âm chứ bạn :)\
3x - x2 - 7 = -( x2 - 3x + 9/4 ) - 19/4 = -( x - 3/2 )2 - 19/4 ≤ -19/4 < 0 ∀ x ( đpcm )
6x - x2 - 10 = -( x2 - 6x + 9 ) - 1 = -( x - 3 )2 - 1 ≤ -1 < 0 ∀ x ( đpcm )
a.
= (2x)2 2.2x+1 +2
=(2x+1)2+2(luôn dương)
b. =x2 +2x.1/2 +1/4+3/4
= (x+1/2)2+3/4 (luôn dương)
c. 2C=(2x)2-4x1/2 +1/4+7/4
= (2x-1/2)2+7/4
r bạn suy ra C luôn dương :>