K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

\(b,\) Ta có:

\(\dfrac{1}{n\sqrt{n-1}+\left(n-1\right)\sqrt{n}}\\ =\dfrac{1}{\sqrt{n}.\sqrt{n-1}\left(\sqrt{n}+\sqrt{n-1}\right)}\\ =\dfrac{\sqrt{n}}{\sqrt{n}.\sqrt{n-1}}-\dfrac{\sqrt{n-1}}{\sqrt{n}.\sqrt{n-1}}\\ =\dfrac{1}{\sqrt{n-1}}-\dfrac{1}{\sqrt{n}}\)

Thay:

\(n=2\) \(\Leftrightarrow\dfrac{1}{2\sqrt{1}+1\sqrt{2}}=\dfrac{1}{1}-\dfrac{1}{\sqrt{2}}\)

\(n=3\Leftrightarrow\dfrac{1}{3\sqrt{2}+2\sqrt{3}}=\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}\)

\(...\)

\(n=2007\Leftrightarrow\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}=\dfrac{1}{\sqrt{2006}}-\dfrac{1}{\sqrt{2007}}\\ \)

13 tháng 8 2017

Tiếp phần b ( do máy lag) :3

Cộng 2 vế với nhau, ta có:

\(\dfrac{1}{2\sqrt{1}+1\sqrt{2}}+\dfrac{1}{3\sqrt{2}+2\sqrt{3}}+...+\dfrac{1}{2007\sqrt{2006}+2006\sqrt{2007}}\\ =1-\dfrac{1}{\sqrt{2007}}\)

11 tháng 11 2017

Mình chỉ viết CT tổng quát thôi nha rồi bạn tự thay vào

a, \(\frac{1}{\sqrt{n}(n+1)+n\sqrt{n+1} }=\frac{1}{\sqrt{n(n+1)( }\sqrt{n}+\sqrt{n+1}} =\frac{\sqrt{n+1}-\sqrt{n} }{\sqrt{n}\sqrt{n+1} } =\frac{1}{\sqrt{n} } -\frac{1}{\sqrt{n+1} } \)

b,\(\frac{1}{\sqrt{n}+\sqrt{n+1} }=\frac{\sqrt{n+1}-\sqrt{n} }{1}= \sqrt{n+1}-\sqrt{n} \)

12 tháng 11 2017

Cảm ơn bạn !!

12 tháng 8 2017

a, (Phần a đề bài phải là \(\left(1+\dfrac{1}{a}-\dfrac{1}{a+1}\right)^2\) mới đúng).

Nếu như vậy phần a ta sẽ áp dụng hằng đẳng thức:

(a + b - c)2 = a2 + b2 + c2 +2ab - 2ac - 2bc rồi khai triển vế trái.

b) Sau khi kahi triển hằng đẳng thức và chứng minh được công thức ở phần a, ta sẽ áp dụng vào phần b rồi tính.

13 tháng 8 2017

bạn làm luôn được không

30 tháng 9 2018

Đặt B = \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{50}}\)

= \(1+2\left(\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}+...+\dfrac{1}{2\sqrt{50}}\right)\)

Đặt \(A=\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}+...+\dfrac{1}{2\sqrt{50}}\)

Xét A < \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{49}+\sqrt{50}}\)

=> A < \(\dfrac{\sqrt{2}-\sqrt{1}}{1}+\dfrac{\sqrt{3}-\sqrt{2}}{1}+...+\dfrac{\sqrt{50}-\sqrt{40}}{1}\)

=> A < -1 + \(\sqrt{50}\)

=> 2A < -2 + \(10\sqrt{2}\)

=> 2A + 1 = B < -2 + \(10\sqrt{2}\) + 1

=> B < -1 + \(10\sqrt{2}\) < \(10\sqrt{2}\) (1)

Xét \(\dfrac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-\sqrt{n}\right)\)

=> \(\dfrac{1}{\sqrt{1}}>2\left(\sqrt{2}-\sqrt{1}\right)\)

\(\dfrac{1}{\sqrt{2}}>2\left(\sqrt{3}-\sqrt{2}\right)\)

\(\dfrac{1}{\sqrt{3}}>2\left(\sqrt{4}-\sqrt{3}\right)\)

...

\(\dfrac{1}{\sqrt{50}}>2\left(\sqrt{51}-\sqrt{50}\right)\)

=> B > 2(\(\sqrt{51}-\sqrt{1}\))

=> B >-2 + \(10\sqrt{2}\) > \(5\sqrt{2}\)

5 tháng 10 2018

Cảm ơn bạn nha. Mà bạn bị nhầm 49 thành 40 ở dòng thứ 5 đó.

17 tháng 10 2018

Rút gọn biểu thức chứa căn bậc hai

17 tháng 7 2018

2/ \(\sqrt{4+\sqrt{4+...+\sqrt{4}}}< \sqrt{6+\sqrt{6+\sqrt{6+...+\sqrt{7+\sqrt{4}}}}}=3\)

1/ Ta có:

\(\sqrt{1+\dfrac{1}{n^2}+\dfrac{1}{\left(n+1\right)^2}}=\sqrt{\left(\dfrac{n^2+n+1}{n\left(n+1\right)}\right)^2}=\dfrac{n\left(n+1\right)+1}{n\left(n+1\right)}=1+\dfrac{1}{n}-\dfrac{1}{n+1}\)

\(\Rightarrow C=99+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}=100-\dfrac{1}{100}=\dfrac{9999}{100}\)

17 tháng 7 2018

Em cảm ơn ạ