K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2017

Ta có: \(n\left(2n-3\right)-2n\left(n+1\right)\) = \(2n^2-3n-2n^2-2n\)

= \(-5n\)

\(-5⋮5\) => -5n \(⋮\) 5

=> \(n\left(2n-3\right)-2n\left(n+1\right)\) \(⋮\) 5 với mọi n \(\in\) Z

20 tháng 8 2017

n(2n-3)-2n(n+1)=2n2-3n+2n2-2n=-5n \(⋮\) 5 với mọi n

24 tháng 6 2016

 n(2n-3)-2n(n+1) 
=2n^2-3n-2n^2-2n 
=-5n 
-5n chia het cho 5 voi moi so nguyên n vi -5 chia het cho 5 
vay n(2n-3)-2n(n+1) chia het cho 5

10 tháng 6 2016

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

\(-5n\)chia hết cho \(5\)với mọi số nguyên \(n\)vì \(-5\)chia hết cho \(5\)

Vậy : \(n\left(2n-3\right)-2n\left(n+1\right)\)chia hết cho \(5\)

7 tháng 6 2016

\(n\left(2n-3\right)-2n\left(n+1\right)=2n^2-3n-2n^2-2n=-5n\) nên sẽ luôn chia hết cho 5 với mọi n là số nguyên

30 tháng 9 2018

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=\left(n+1\right)\left(n^2+2n\right)\)

\(=\left(n+1\right)n\left(n+2\right)\)

\(=n\left(n+1\right)\left(n+2\right)\)

vì tích của 3 số tự nhiên liên tiếp chia hết cho 6

Mặt khác n và n+1 và n+2 là 3 số tự nhiên liên tiếp

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\forall n\left(đpcm\right)\)

2 tháng 5 2017

Ta có : \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)\)

\(=n\left(3-2n\right)-\left(3-2n\right)-n^2-5n\)

\(=3n-2n^2-3+2n-n^2-5n\)

\(=-3n^2-3\)

\(=-3\left(n^2+1\right)⋮3\)

Vậy \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)⋮3\)

25 tháng 6 2017

Ta có \(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)=3n-2n^2-3+2n-n^2-5n=-3n-3\)

mà -3n chia hết cho 3,-3 chia hết cho 3

=> biểu thức (n-1)(3-2n)-n(n+5) chia hết cho 3(đpcm)

4 tháng 10 2019

2. Ta có: P = 2x2 + y2 - 4x - 4y + 10

P = 2(x2 - 2x + 1) + (y2 - 4y + 4) + 4

P = 2(x - 1)2 + (y - 2)2 + 4 \(\ge\)\(\forall\)x;y

=> P luôn dương với mọi biến x;y

3 Ta có:

(2n + 1)(n2 - 3n - 1) - 2n3 + 1

= 2n3 - 6n2 - 2n + n2 - 3n - 1 - 2n3 + 1

= -5n2 - 5n = -5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

20 tháng 4 2020

1×2=2

10 tháng 6 2016

cung hoi kho day chu

10 tháng 6 2016

\(\left(n-1\right)\left(3-2n\right)-n\left(n+5\right)=n\left(3-2n\right)-1\left(3-2n\right)-n\left(n+5\right)\)

\(=3n-2n^2-3+2n-n^2-5n=\left(3n+2n-5n\right)-\left(2n^2+n^2\right)-3=-3n^2-3\)

\(=-\left(3n^2+n\right)=-3n\left(n+1\right)=3.\left(-n\right).\left(n+1\right)\) chia hết cho 3 với mọi n

23 tháng 6 2016

Ta có n^2(n+1)+2n(n+1) = n^3+3n^2+2n = n(n^2+3n+2) = n(n+1)(n+2) 
Ta thấy n, n+1, n+2 là ba số nguyên liên tiếp với n nguyên 
=> trong 3 số n, n+1, n+2 có một số chia hết cho 3, có ít nhất một số chia hết cho 2 
=> n(n+1)(n+2) chia hết cho 2*3 = 6 (vì ƯCLN(2;3)=1) 
=> đpcm

\(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=>\left(n+1\right)\left(n^2+2n\right)\)

\(=>n\left(n+1\right)\left(n+2\right)\)

Ta thấy \(n;\left(n+1\right);\left(n+2\right)\)là 3 số tự nhiên liên tiếp

Mà tích của 3 số tn liên tiếp luôn chia hết cho 6

=> \(n^2\left(n+1\right)+2n\left(n+1\right)\)chia hết ch 6 ( đpcm )

Cấm ai chép ...............

9 tháng 9 2016

Biểu thức đó bằng 5m - 5n nên chia hết cho 5 với mọi m,n nguyên