Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\frac{x^2}{4}+x+3=\frac{x^2}{4}+x+1+2=\left(\frac{x}{2}+1\right)^2+2>0;\forall x\)
b.
\(A=-3x^2+2x-5=-3\left(x^2-2.\frac{1}{3}x+\frac{1}{9}\right)-\frac{14}{3}=-3\left(x-\frac{1}{3}\right)^2-\frac{14}{3}\le-\frac{14}{3}\)
\(A_{max}=-\frac{14}{3}\) khi \(x=\frac{1}{3}\)
c.
Đề thiếu (để ý 2 số hạng cuối)
\(A=x^4-2x^3+x^2+3x^2-6x+3-1\)
\(=\left(x^2-x\right)^2+3\left(x-1\right)^2-1\ge-1\)
\(A_{min}=-1\) khi \(x=1\)
d.
\(27x^2-\frac{9}{2}x+\frac{3}{16}=3\left(9x^2-\frac{3}{2}x+\frac{1}{16}\right)=3\left(3x-\frac{1}{4}\right)^2\)
e.
\(=\left[\left(b+c\right)+a\right]^2+\left[\left(b+c\right)-a\right]^2+\left[a-\left(b-c\right)\right]^2+\left[a+\left(b-c\right)\right]^2\)
\(=2\left(b+c\right)^2+2a^2+2a^2+2\left(b-c\right)^2\)
\(=4a^2+2b^2+4bc+2c^2+2b^2-4bc+2c^2\)
\(=4\left(a^2+b^2+c^2\right)\)
f.
\(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)
\(=\left(a^2c^2+b^2d^2+2ac.bd\right)+\left(a^2d^2+b^2c^2-2ad.bc\right)\)
\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
a) VT = (a+b)(\(a^2-ab+b^2\)) + \(\left(a-b\right)\left(a^2+ab+b^2\right)=a^3+b^3\)\(+a^3-b^3\) = \(2a^3=VP\) (đpcm)
b, VP =\(\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left[a^2-2ab+b^2+ab\right]=\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3=VT\left(đpcm\right)\)
c, Ta có : \(VT=\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)(1)
\(VP=\left(ac+bd\right)^2+\left(ad-bc\right)^2=a^2c^2+2acbd+b^2d^2+a^2d^2-2adbc+b^2c^2=a^2c^2+b^2d^2+a^2d^2+b^2c^2\) (2)
Từ (1) và (2), ta có \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\left(đpcm\right)\)
Câu 1. Tìm x, biết:
\(a.3x\left(12x-4\right)-9x\left(4x-3\right)=30\)
\(36x^2-12x-36x^2+27x=30\)
\(15x=30\)
\(x=2\)
\(b.2x\left(x-1\right)+x\left(5-2x\right)=15\)
\(2x^2-2x+5x-2x^2=15\)
\(3x=15\)
\(x=5\)
Câu 2. Điền vào chỗ trống để được kết quả đúng.
\(a.\left(x^2-2xy\right)\left(-3x^2y\right)=-3x^4y+6x^3y^2\)
\(b.x^2\left(x-y\right)+y\left(x^2+y\right)=x^3+y^2\)
Câu 3. Điền vào chỗ trống để được kết quả đúng.
\(a.\left(2x+1\right)^2\)
\(b.\left(x+2y\right)^2\)
Câu 4. Viết các đa thức sau dưới dạng bình phương của một tổng:
\(a.\left(2x-3y\right)^2+2\left(2x+3y\right)+1=\left(2x-3y+1\right)^2\)
\(b.x^2+4xy+4y^2=\left(x+2y\right)^2\)
Câu 5. Chứng minh đẳng thức:
\(\left(a-b\right)^2=\left(a+b\right)^2-4ab=a^2+2ab+b^2-4ab=a^2-2ab+b^2=\left(a-b\right)^2\)
Vậy đẳng thức đã được chứng minh ( làm tóm gọn thôi , trình bày vào vở thì tự nhé )
Câu 6. Điền vào chỗ trống để được kết quả đúng:
\(a.8x^6+36x^4y+54x^2y^2+27y^3=\left[\left(2x^2\right)+3y\right]^3\)
\(b.x^3-6x^2y+12xy^2-8y^3=\left(x-2y\right)^3\)
Câu 11. Rút gọn biểu thức:
\(A=\left(x^2-3x+9\right)\left(x+3\right)-\left(54+x^3\right)\)
\(A=x^3+27-54-x^3=-27\)
Câu 8. Viết biểu thức sau dưới dạng tích:
\(a.8x^3-y^3=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(b.27x^3+8=\left(3x+2\right)\left(9x^2-6x+4\right)\)
Câu 9. Chứng minh đẳng thức:
\(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+b^3=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=a^3+b^3\)
Vậy đẳng thức đã được chứng minh ( làm tóm gọn thôi , trình bày vào vở thì tự nhé )
Câu 10. Điền vào chỗ trống để được đẳng thức đúng:
\(a.\left(2x\right)^3+y^3=\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(b.\left(a-b\right)\left(a^2+ab+b^2\right)=a^3+b^3\)
Câu 7. Rút gọn biểu thức:
\(A=\left(x+3\right)\left(x-3x+9\right)-\left(54+x^3\right)=3x-2x^2+27-54-x^3=3x-2x^2-27-x^3\)
( Chắc rút vậy là hết cỡ rồi ==" )
Câu 12 . Coi lại đề @@
Câu 13 .
\(y^2+4y+4=\left(2+y\right)^2=\left(98+2\right)^2=100^2=10000\)
1)
a) \(\dfrac{18ab}{27bc}=\dfrac{2a}{3c}\)
b) \(\dfrac{-21b^2y^2}{-28by}=\dfrac{3by}{4}\)
c) \(\dfrac{-49a^3}{14b^3}=\dfrac{-7a^3}{2b^3}\)
d) \(\dfrac{12x^3y^2}{18xy^5}=\dfrac{2x^2}{3y^3}\)
2)
a) \(\dfrac{a^3\left(a-5\right)}{a-5}=a^3\)
b) \(\dfrac{3\left(b+7\right)^4}{8\left(b+7\right)^6}=\dfrac{3}{8\left(b+7\right)^2}\)
c) \(\dfrac{15x\left(x+5\right)^2}{20x^2\left(x+5\right)}=\dfrac{3\left(x+5\right)}{4x}\)
d) \(\dfrac{x^3-4x^2}{y\left(x-4\right)}=\dfrac{x^2\left(x-4\right)}{y\left(x-4\right)}=\dfrac{x^2}{y}\)
e) \(\dfrac{5\left(a-2c\right)^2}{2a^2-4ac}=\dfrac{5\left(a-2c\right)^2}{2a\left(a-2c\right)}=\dfrac{5\left(a-2c\right)}{2a}\)
3)
a) \(\dfrac{ax-3a}{bx-3b}=\dfrac{a\left(x-3\right)}{b\left(x-3\right)}=\dfrac{a}{b}\) (câu này mình sửa lại đề)
b) \(\dfrac{5x+20y}{15x+60y}=\dfrac{5\left(x+4y\right)}{15\left(x+4y\right)}=\dfrac{1}{3}\)
c) \(\dfrac{3b-9c}{5b^2-15bc}=\dfrac{3\left(b-3c\right)}{5b\left(b-3c\right)}=\dfrac{3}{5b}\)
d) \(\dfrac{8a^2+40ab}{ab+5b^2}=\dfrac{8a\left(a+5b\right)}{b\left(a+5b\right)}=\dfrac{8a}{b}\)
4)
a) \(\dfrac{3x^2-12x+12}{x^4-8x}=\dfrac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}\)
\(=\dfrac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)
b) \(\dfrac{7x^2+14x+7}{3x^2+3x}=\dfrac{7\left(x^2+2x+1\right)}{3x\left(x+1\right)}\)
\(=\dfrac{7\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{7\left(x+1\right)}{3x}\)
5)
a) \(\dfrac{45x\left(3-x\right)}{15\left(x-3\right)^3}=\dfrac{-45x\left(x-3\right)}{15\left(x-3\right)^3}=\dfrac{-3x}{\left(x-3\right)^2}\)
b) \(\dfrac{36\left(x-2\right)^3}{32-16x}=\dfrac{36\left(x-2\right)^3}{-16\left(x-2\right)}=\dfrac{-9\left(x-2\right)^2}{4}\)
c) \(\dfrac{x^2-xy}{5y^2-5xy}=\dfrac{-x\left(y-x\right)}{5y\left(y-x\right)}=\dfrac{-x}{5y}\)
d) \(\dfrac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}=\dfrac{-\left(y+x\right)\left(x-y\right)}{\left(x-y\right)^3}=\dfrac{-x-y}{\left(x-y\right)^2}\)
1.
a, \(\dfrac{18ab}{27bc}=\dfrac{18ab:9b}{27bc:9b}=\dfrac{2a}{3c}\)
b, \(\dfrac{-21b^2y^2}{-28by}=\dfrac{-21b^2y^2:\left(-7\right)by}{-28by:\left(-7\right)by}=\dfrac{3by}{4}\)
c, \(\dfrac{-49a^3}{14b^3}=\dfrac{-49a^3:7}{14b^3:7}=\dfrac{-7a^3}{2b^3}\)
d, \(\dfrac{12x^3y^2}{18xy^5}=\dfrac{6xy^2\cdot2x^2}{6xy^2\cdot3y^3}=\dfrac{2x^2}{3y^3}\)
2.
a,\(\dfrac{a^3\cdot\left(a-5\right)}{a-5}=\dfrac{a^3}{1}=a^3\)
b,\(\dfrac{3\cdot\left(b+7\right)^4}{8\cdot\left(b+7\right)^6}=\dfrac{3}{8\cdot\left(b+7\right)^2}\)
c,\(\dfrac{15x\cdot\left(x+5\right)^2}{20x^2\cdot\left(x+5\right)}=\dfrac{3\cdot\left(x+5\right)}{4x}\)
d,\(\dfrac{x^3-4x^2}{y\cdot\left(x-4\right)}=\dfrac{x^2}{y}\)
e,\(\dfrac{5\cdot\left(a-2x\right)^2}{2a^2-4ac}=\dfrac{5\cdot\left(a-2x\right)}{2a}\)
3.
a,\(\dfrac{ax-3a}{bx-3b}=\dfrac{a\cdot\left(x-3\right)}{b\cdot\left(x-3\right)}=\dfrac{a}{b}\)
b, \(\dfrac{5x+20y}{15x+60y}=\dfrac{5\cdot\left(x+4y\right)}{15\cdot\left(x+4y\right)}=\dfrac{5}{15}=\dfrac{1}{3}\)
c, \(\dfrac{3b-9c}{5b^2-15bc}=\dfrac{3\cdot\left(b-3c\right)}{5b\cdot\left(b-3c\right)}=\dfrac{3}{5b}\)
d, \(\dfrac{8a^2+40ab}{ab+5b^2}=\dfrac{8a\cdot\left(a+5b\right)}{b\cdot\left(a+5b\right)}=\dfrac{8a}{b}\)
4.
a,\(\dfrac{3x^2-12x+12}{x^4-8x}=\dfrac{3\cdot\left(x^2-4x+4\right)}{x\cdot\left(x^3-8\right)}=\dfrac{3\cdot\left(x-2\right)^2}{x\cdot\left(x-2\right)\cdot\left(x^2+2x+4\right)}=\dfrac{3\cdot\left(x-2\right)}{x\cdot\left(x^2+2x+4\right)}=\dfrac{3\cdot\left(x-2\right)}{x\cdot\left(x+2\right)^2}\)
b, \(\dfrac{7x^2+14x+7}{3x^2+3x}=\dfrac{7\cdot\left(x^2+2x+1\right)}{3x\cdot\left(x+1\right)}=\dfrac{7\cdot\left(x+1\right)^2}{3x\cdot\left(x+1\right)}=\dfrac{7\cdot\left(x+1\right)}{3x}\)
5.
a, \(\dfrac{45x\cdot\left(3-x\right)}{15x\cdot\left(x-3\right)^3}=\dfrac{3\cdot\left(3-x\right)}{\left(x-3\right)^3}=\dfrac{-3\cdot\left(x-3\right)}{\left(x-3\right)^3}=\dfrac{-3}{\left(x-3\right)^2}\)
b, \(\dfrac{36\cdot\left(x-2\right)^3}{36-16x}=\dfrac{36\cdot\left(x-2\right)^3}{16\cdot\left(2-x\right)}=\dfrac{36\cdot\left(-\left(x-2\right)\right)^3}{16\cdot\left(2-x\right)}=\dfrac{-36\cdot\left(2-x\right)^3}{16\cdot\left(2-x\right)}=\dfrac{-9\cdot\left(2-x\right)^2}{4}\)
c, \(\dfrac{x^2-xy}{5y^2-5xy}=\dfrac{x\cdot\left(x-y\right)}{5y\cdot\left(y-x\right)}=\dfrac{-x\cdot\left(y-x\right)}{5y\cdot\left(y-x\right)}=\dfrac{-x}{5y}\)
d, \(\dfrac{y^2-x^2}{x^3-3x^2y+3xy^2+y^3}=\dfrac{\left(x+y\right)\cdot\left(x-y\right)}{\left(x-y\right)^3}=\dfrac{-\left(x+y\right)\cdot\left(y-x\right)}{\left(x-y\right)^3}=\dfrac{-\left(x+y\right)}{\left(x-y\right)^2}\)
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(=>a^2\left(x^2+y^2\right)+b^2\left(x^2+y^2\right)=\left(ax\right)^2+2axby+\left(by\right)^2\)
\(=>a^2x^2+a^2y^2+b^2x^2+b^2y^2-a^2x^2-2axby-b^2y^2=0\)
\(=>a^2y^2+b^2x^2-2axby=0=>\left(ay-bx\right)^2=0\)
=>ax-by=0=>ax=by
Vậy .....................
2) b)
Xét hiệu :
\(100^2+103^2+105^2+94^2-\left(101^2+98^2+96^2+107^2\right)\)
\(=100^2+103^2+105^2+94^2-101^2-98^2-96^2-107^2\)
\(=\left(100^2-98^2\right)+\left(103^2-101^2\right)-\left(107^2-105^2\right)-\left(96^2-94^2\right)\)
\(=\left(100-98\right)\left(100+98\right)+\left(103-101\right)\left(103+1\right)-\left(107-105\right)\left(107+105\right)\)\(-\left(96-94\right)\left(96+94\right)\)
\(=2.198+2.204-2.212-2.190=2\left(198+204-212-190\right)=2.0=0\)
Vậy 1002+1032+1052+942=1012+982+962+1072
Bài 1:
\(a,\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)
\(=x^6-3x^4+3x^2-1-x^6+1\)
\(=-3x^2\left(x^2-1\right)\)
\(b,\left(x^4-3x^2+9\right)\left(x^2+3\right)-\left(3+x^2\right)^3\)
\(=x^6+27-27-27x^2-9x^4-x^6\)
\(=-9x^2\left(3-x^2\right)\)
Bài 5:
\(A=x^2-2x+1\)
\(=\left(x^2-2x+1\right)-2\)
\(=\left(x-1\right)^2-2\)
Với mọi giá trị của x ta có:
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2-2\ge-2\)
Vậy Min A = -2
Để A = -2 thì \(x-1=0\Rightarrow x=1\)
b, \(B=4x^2+4x+5\)
\(=\left(4x^2+4x+1\right)+4\)
\(=\left(2x+1\right)^2+4\)
Với mọi giá trị của x ta có:
\(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+4\ge4\)
Vậy Min B = 4
Để B = 4 thì \(2x+1=0\Rightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)
c, \(C=2x-x^2-4\)
\(=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\)
Với mọi giá trị của x ta có:
\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-3\le-3\)Vậy Max C = -3
để C = -3 thì \(x-1=0\Rightarrow x=1\)
Câu 9.
a) Ta có: \(\left(a-1\right)^2\ge0\)(điều hiển nhiên)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow a^2+2a+1\ge4a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\left(đpcm\right)\)
b) Áp dụng BĐT Cauchy cho 2 số không âm:
\(a+1\ge2\sqrt{a}\)
\(b+1\ge2\sqrt{b}\)
\(c+1\ge2\sqrt{c}\)
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(Vì abc = 1)
Câu 10.
a) Ta có: \(-\left(a-b\right)^2\le0\)(điều hiển nhiên)
\(\Leftrightarrow-a^2+2ab-b^2\le0\)
\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
Có: \(2ab\le a^2+b^2;2bc\le b^2+c^2;2ac\le a^2+c^2\)(BĐT Cauchy)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3\left(a^2+b^2+c^2\right)\)
Vậy \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
Bài 1 :
\(=\left(x^3-x\right)-\left(6x+6\right)\)
\(=x\left(x^2-1\right)-6\left(x+1\right)\)
\(=x\left(x+1\right)\left(x-1\right)-6\left(x+1\right)\)
\(=\left(x^2-x\right)\left(x+1\right)-6\left(x+1\right)\)
\(=\left(x^2-x-6\right)\left(x+1\right)\)
Bài 1:
Ta có:
\(2\left(a^2+b^2\right)=\left(a-b\right)^2\)
\(\Rightarrow2\left(a^2+b^2\right)-\left(a-b\right)^2=0\)
\(\Rightarrow2a^2+2b^2-\left(a^2-2ab+b^2\right)=0\)
\(\Rightarrow2a^2+2b^2-a^2+2ab-b^2=0\)
\(\Rightarrow a^2+2ab+b^2=0\)
\(\Rightarrow\left(a+b\right)^2=0\)
\(\Rightarrow a+b=0\)
Vì hai số đối nhau là hai số có tổng bằng 0
Vậy a và b là hai số đối nhau
Bài 2:
Ta có:
\(a^2+b^2+c^2=ab+bc+ac\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)=2\left(ab+bc+ac\right)\)
\(\Rightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Rightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Rightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)=0\)
\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0\) với mọi a và b
\(\left(a-c\right)^2\ge0\) với mọi a và c
\(\left(b-c\right)^2\ge0\) với mọi b và c
\(\Rightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2\ge0\) với mọi a, b, c
Mà \(\left(a-b\right)^2+\left(a-c\right)^2+\left(b-c\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(a-c\right)^2=0\\\left(b-c\right)^2=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\a-c=0\\b-c=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\a=c\\b=c\end{matrix}\right.\)
Vậy a = b = c
Bài 3:
Sửa đề:
\(\left(a^2+b^2\right)\left(x^2+y^2\right)=\left(ax+by\right)^2\)
\(\Rightarrow a^2x^2+a^2y^2+b^2x^2+b^2y^2=a^2x^2+b^2y^2+2axby\)
\(\Rightarrow a^2y^2+b^2x^2=2axby\)
\(\Rightarrow a^2y^2-2axby+b^2x^2=0\)
\(\Rightarrow\left(ay-bx\right)^2=0\)
\(\Rightarrow ay-bx=0\)
\(\Rightarrow ay=bx\)
\(\Rightarrow\dfrac{a}{x}=\dfrac{b}{y}\)
Bài 2:
a: \(A=1999\cdot2001\)
\(=\left(2000-1\right)\left(2000+1\right)\)
\(=2000^2-1< 2000^2=B\)
Do đó: B lớn hơn
b: \(C=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\)
\(=\left(2^8-1\right)\left(2^8+1\right)\)
\(=2^{16}-1< 2^{16}=D\)
Do đó: D lớn hơn