K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

áp dụng BĐT cô si cho 2 số ta có

\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}\)

\(\dfrac{x}{y}+\dfrac{y}{x}\ge2\left(đpcm\right)\)

15 tháng 3 2018

Cách khác:

Đặt \(A=\dfrac{x}{y}+\dfrac{y}{x}\)

\(A=\dfrac{x^2+y^2}{xy}\)

Lại có:\(\left(x-y\right)^2\ge0\)

\(\Rightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow x^2+y^2\ge2xy\)

\(\Rightarrow A=\dfrac{x^2+y^2}{xy}\ge\dfrac{2xy}{xy}=2\left(đpcm\right)\)

Dấu "=" xảy ra khi x=y

\(\dfrac{x}{y}+\dfrac{y}{x}>2\)

\(\Leftrightarrow x^2+y^2>2xy\)

\(\Leftrightarrow\left(x-y\right)^2>0\)(luôn đúng)

8 tháng 2 2017

Vì x, y cùng dấu nên \(\hept{\begin{cases}\frac{x}{y}>0\\\frac{y}{x}>0\end{cases}}\)

Ta có:

\(\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{y}-2+\frac{y}{x}\right)+2=\left(\sqrt{\frac{x}{y}}-\sqrt{\frac{y}{x}}\right)^2+2\ge2\)

Dấu = xảy ra khi x = y # 0

8 tháng 2 2017

\(\frac{x}{y}+\frac{y}{x}\ge2\Leftrightarrow\frac{x}{y}+\frac{y}{x}-2\ge0\Leftrightarrow\frac{x^2+y^2-2xy}{xy}\ge0\Leftrightarrow\frac{\left(x-y\right)^2}{xy}\ge0\) luôn đúng!

30 tháng 4 2019

\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow x^2+2xy+y^2\ge4xy\)

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) là bất đẳng thức đúng.

Vậy ta có đpcm. Dấu "=" khi \(x=y\)

2 tháng 4 2016

Ta có suy ra

(x^2+y^2)/xy>=2 suy ra x^2 +y^2 >=2xy

chuyển 2xy sang ta có

x^2 +Y^2-2xy>=0 suy ra (x-y) ^2 >=0 với mọi x ,y

dấu "=" xảy ra khi 

x-y=0 suy ra x= y

ĐPCM

2 tháng 4 2016

giả sử x/y+y/x>/2

<=> x^2+y^2/xy>/2

<=> x^2+y^2>/2xy

<=>x^2-2xy+y^2>/0

<=> (x-y)^2>/0 (đúng)

vậy x/y+y/x>/0

dấu "=" xảy ra <=> x-y=0<=> x=y

29 tháng 7 2017

a/ \(x^2+xy+y^2+1=\left(x^2+xy+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1>0\)

b/ \(x^2+5y^2+2x-4xy-10y+14\)

\(=\left(x^2-4xy+4y^2\right)+2\left(x-2y\right)+1+\left(y^2-6y+9\right)+4\)

\(=\left(x-2y\right)^2+2\left(x-2y\right)+1+\left(y-3\right)^2+4\)

\(=\left(x-2y+1\right)^2+\left(y-3\right)^2+4>0\)

31 tháng 12 2016

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

<=> \(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

<=> (x + y)^2\(\ge\) 4xy

<=> x^2 + y^2 + 2xy - 4xy \(\ge\)0

<=> x^2 + y^2 - 2xy \(\ge\)0

<=> (x - y)^2 \(\ge\)0

=> đpcm

29 tháng 8 2020

x2+y2z2>=2lxl.lyl.lzl nên VT>=6lxl.lyl.lzl>=6xyz