Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 9.
a) Ta có: \(\left(a-1\right)^2\ge0\)(điều hiển nhiên)
\(\Leftrightarrow a^2-2a+1\ge0\)
\(\Leftrightarrow a^2+2a+1\ge4a\)
\(\Leftrightarrow\left(a+1\right)^2\ge4a\left(đpcm\right)\)
b) Áp dụng BĐT Cauchy cho 2 số không âm:
\(a+1\ge2\sqrt{a}\)
\(b+1\ge2\sqrt{b}\)
\(c+1\ge2\sqrt{c}\)
\(\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge8\sqrt{abc}=8\)(Vì abc = 1)
Câu 10.
a) Ta có: \(-\left(a-b\right)^2\le0\)(điều hiển nhiên)
\(\Leftrightarrow-a^2+2ab-b^2\le0\)
\(\Leftrightarrow a^2+2ab+b^2\le2a^2+2b^2\)
\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2bc+2ac\)
Có: \(2ab\le a^2+b^2;2bc\le b^2+c^2;2ac\le a^2+c^2\)(BĐT Cauchy)
\(\Rightarrow a^2+b^2+c^2+2ab+2bc+2ac\le3\left(a^2+b^2+c^2\right)\)
Vậy \(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)\)
a2 + b2 + 3 > ab + a + b
<=> 2a2 + 2b2 + 6 > 2ab + 2a + 2b
<=> 2a2 + 2b2 + 6 - 2ab - 2a - 2b > 0
<=> ( a2 - 2ab + b2 ) + ( a2 - 2a + 1 ) + ( b2 - 2b + 1 ) + 4 > 0
<=> ( a - b )2 + ( a - 1 )2 + ( b - 1 )2 + 4 > 0 ( đúng ∀ a,b )
Vậy bđt ban đầu được chứng minh
quãng đường từ nhà Giang đến chợ huyện gồm một đoạn lên dốc .Giang đi từ nhà đến chợ huyện hết 2h 45 phút.Vận tốc khi lên dốc là 8 km/giờ,vận tốc khi xuống dốc là 12km/giờ.Thời gian khi lên dốc hơn thời gian khi xuống dốc là 0,25 giờ.Tính quãng đường từ nhà Giag đến chợ huyện
a: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
\(=a^2c^2+b^2d^2+2bacd+a^2d^2+b^2c^2-2bacd\)
\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)
\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
b: \(\Leftrightarrow2a^2+2b^2+2c^2=2ba+2ac+2bc\)
=>\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)=0\)
=>(a-b)^2+(b-c)^2+(a-c)^2=0
=>a=b=c
A B C D E
a) Xét \(\Delta\)ABD và \(\Delta\)CED có:
^BAD = ^ECD ( = 1/2 ^BCx )
^ADB = ^CDE ( đối đỉnh)
=> \(\Delta\)ABD ~ \(\Delta\)CED ( g-g)
b) Xét \(\Delta\)EAC và \(\Delta\)ECD có:
^EAC = ^ECD ( = 1/2 ^BCx )
^AEC = ^CED ( ^E chung )
=> \(\Delta\)EAC ~ \(\Delta\)ECD ( g-g)
=> \(\frac{AE}{AC}=\frac{EC}{CD}\)(1)
Mặt khác từ (a) => \(\frac{AB}{AD}=\frac{EC}{CD}\)(2)
Từ (1) ; (2) => \(\frac{AE}{AC}=\frac{AB}{AD}\)=> AB. AC = AE.AD < AE. AE (3)
=> AB. AC < \(AE^2\)
c) Từ (3) ta có: AB. AC = AE.AD
Ta lại có: \(4AI^2-DE^2=\left(2AI-DE\right)\left(2AI+DE\right)\)
Vì I là trung điểm DE nên DI = IE = 1/2 DE => DE = 2 DI = 2IE
+) 2AI - DE = 2 ( AD + DI ) - 2 DI = 2AD + 2 DI - 2 DI = 2 AD
+) 2AI + DE = 2 ( AD + DI ) + DE = 2 AD + 2 DI + DE = 2 AD + DE + DE = 2 AD + 2 DE = 2 ( AD + DE ) = 2 AE
=> \(4AI^2-DE^2=2AD.2DE=4AD.DE=4AB.AC\)
Vậy...
d) Xét \(\Delta\)BDE và \(\Delta\)ADC có:
\(\frac{BD}{ED}=\frac{AD}{CD}\)( suy ra từ (a) )
^BDE = ^ADC ( đối đỉnh)
=> \(\Delta\)BDE ~ \(\Delta\)ADC ( g-c)
=> ^EBD = ^CAD = DCE
=> \(\Delta\)BEC cân
=> EB = EC
=> Trung trực BC qua E
2/ Ta có \(\left(a+b+c+d\right)^2\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2\left(ab+ac+ad+bc+bd+cd\right)\ge\frac{8}{3}\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow3\left(a^2+b^2+c^2+d^2\right)+6\left(ab+ac+ad+bc+bd+cd\right)\ge8\left(ab+ac+ad+bc+bd+cd\right)\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(a^2-2ad+d^2\right)+\left(b^2-2bc+c^2\right)+\left(b^2-2bd+d^2\right)+\left(c^2-2cd+d^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+\left(a-d\right)^2+\left(b-c\right)^2+\left(b-d\right)^2+\left(c-d\right)^2\ge0\)(luôn đúng)
Vậy bđt ban đầu được chứng minh.
Lời giải :
a) \(VP=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
\(=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3+b^3=VT\)( đpcm )
b) \(VT=\left(a^2+b^2\right)\left(c^2+d^2\right)\)
\(=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
\(=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)
\(=\left(ac+bd\right)^2+\left(ad-bc\right)^2=VP\)( đpcm )
a)CM \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
VT = \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
VP = \(\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left(a^2-ab+b^2\right)\)
Ta thấy VP = VT
=> \(a^3+b^3=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
b) CM \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
VT = \(\left(a^2+b^2\right)\left(c^2+d^2\right)=a^2c^2+a^2d^2+b^2c^2+b^2d^2\)
VP = \(\left(ac+bd\right)^2+\left(ad-bc\right)^2=ac^2+2acbd+bd^2+ad^2-2abcd+bc^2=ac^2+ad^2+bd^2+bc^2\)Ta thấy VP = VT
=> \(\left(a^2+b^2\right)\left(c^2+d^2\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
Ta có: a2 + b2 = c2 + d2
=>a2-c2=d2-b2
=>(a-c)(a+c)=(d-b)(d+b) (1)
Lại có: a + b = c + d
=>a-c=d-b
Nếu a=c => b=d hiễn nhiên biểu thức:
a2002 + b2002 = c2002 + d2002 đúng. (II)
Nếu ac =>bd
=>a-c=d-b0
Khi đó biểu thức (1) trở thành:
a+c=b+d (a-c, d-b khác không nên ta có thể đơn giản)
mà: a + b = c + d
cộng hai biểu thức theo vế ta được:
2a+b+c=b+c+2d
=>2a=2d
=>a=d
=>b=c
Vì a=d và b=c nên biểu thức a2002 + b2002 = c2002 + d2002 đúng. (I)
Kết luận: với điều kiện đềcho ta luôn có: a2002 + b2002 = c2002 + d2002.
Mk giải thích nhanh nhé
Bạn trừ vế phải cho vế trái rồi nhân 2 lên ta ra được (a-b)^2+(b-c)^2+(c-a)^2 >=0 => đpcm
Đề sửa lại phải là : a^2+b^2+c^2 >= ab+bc+ca nha bạn !
Có : (a-b)^2 >= 0
<=> a^2+b^2 >= 2ab
Tương tự : b^2+c^2 >= 2bc
c^2+a^2 >= 2ca
<=> 2.(a^2+b^2+c^2) >= 2.(ab+bc+ca)
<=> a^2+b^2+c^2 >= ab+bc+ca
=> ĐPCM
Dấu "=" xảy ra <=> a=b=c
Tk mk nha