Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giá trị tuyệt đối của một tổng hai số nguyên nhỏ hơn hoặc bằng tổng các giá trị tuyệt đối của chúng
l a + b l \(\le\)l a l + l b l
Dấu '' = '' xảy ra khi a \(\ge\)b \(\ge\)0 hoặc a \(\le\)b \(\le\)0
Ví dụ l - 2 + 5 l < l - 2 l + l 5 l
l 8 + 9 l = l 8 l + l 9 l
l - 2 + ( - 5 ) l = l - 2 l + l - 5 l
Có a<b (1) và b<c (2)
Cộng vế theo vế của (1) và (2) ta được : a+b<b+c
=> a<c ( trừ 2 vế với b)
Bài 2:
Ta chứng minh \(\left|a+b\right|\le\left|a\right|+\left|b\right|\) (*) :
Bình phương 2 vế của (*) ta có:
\(\left(\left|a+b\right|\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)
\(\Leftrightarrow a^2+b^2+2ab\le a^2+b^2+2\left|ab\right|\)
\(\Leftrightarrow ab\le\left|ab\right|\) (luôn đúng)
Áp dụng (*) vào bài toán ta có:
\(\left|a-c\right|\le\left|a-b+b-c\right|=\left|a-c\right|\) (luôn đúng)
a) a<b
=>ac<bc (vi c>0)
=>ac+ab<bc+ab
=>a(b+c)<b(a+c)
=>a/b<a+c/b+c
b) lam nguoc lai cau a
Ta có: a < b
=> a - b < 0
=> a - b - a < 0 - a
=> - b < - a.
Vậy.....