K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2018

muốn hỏi thì copy link rồi hỏi nhé bạn!!

https://olm.vn/bg/luyenthichuyen/thao-luan

17 tháng 7 2018

Ta có: \(\left(\sqrt{a}+\sqrt{c}\right)^2=a+2\sqrt{ac}+c=2b+2\sqrt{ac}\)(1)

Lại có: \(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2\sqrt{b}+\sqrt{a}+\sqrt{c}}{b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}\)

\(=\frac{\left(2\sqrt{b}+\sqrt{a}+\sqrt{c}\right)\left(\sqrt{a}+\sqrt{c}\right)}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)(Nhân cả tử & mẫu với \(\sqrt{a}+\sqrt{c}\))

\(=\frac{2\sqrt{ab}+2\sqrt{bc}+\left(\sqrt{a}+\sqrt{c}\right)^2}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)(2)

Thế (1) và (2) => \(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}\)\(=\frac{2\sqrt{ab}+2\sqrt{bc}+2b+\sqrt{ca}}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}=\frac{2\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)}{\left(b+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\left(\sqrt{a}+\sqrt{c}\right)}\)

\(=\frac{2}{\sqrt{a}+\sqrt{c}}.\)

\(\Rightarrow\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{2}{\sqrt{a}+\sqrt{c}}\)(đpcm).

12 tháng 9 2018

kurokawa neko sau khi thay 1 vào 2 là 2\(\sqrt{ac}\)nha

11 tháng 12 2016

1) c/m \(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\)

áp dụng BĐT cô shi cho 2 số thực dương ta có:

\(a+b\ge2\sqrt{ab}\);\(b+c\ge2\sqrt{bc}\);\(a+c\ge2\sqrt{ac}\)

cộng vế vs vế:\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\right)\)

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

dấu = xảy ra khi a=b=c

vậy...

b)ta có:

\(\frac{1}{\sqrt{1}}>\frac{1}{\sqrt{2}}>\frac{1}{\sqrt{3}}>...>\frac{1}{\sqrt{25}}\)\(A>\frac{1}{\sqrt{25}}+\frac{1}{\sqrt{25}}+...+\frac{1}{\sqrt{25}}\)(25 số hạng)

\(A>\frac{25}{\sqrt{25}}=\sqrt{25}=5\)

vậy.....

 

 

 

12 tháng 12 2016

tức là các số 1/(căn)1; 1/(căn)2... thay cho 1/(căn 25)

1 tháng 1 2020

bài này hay đấy

Áp dụng BĐT Cô-si cho 3 số không âm, ta có :

\(\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\ge3\sqrt[3]{\frac{1+\sqrt{a}}{1+\sqrt{b}}.\frac{1+\sqrt{b}}{1+\sqrt{c}}.\frac{1+\sqrt{c}}{1+\sqrt{a}}}=3\)

Chứng minh \(\frac{1+\sqrt{a}}{1+\sqrt{b}}+\frac{1+\sqrt{b}}{1+\sqrt{c}}+\frac{1+\sqrt{c}}{1+\sqrt{a}}\le3+a+b+c\)( 1 )

đặt \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)( x,y,z \(\ge\)0 )

do a,b,c là số nguyên 

Nếu a = b = c = 0 thì x = y = z = 0 nên ( 1 ) đúng

Nếu a,b,c không đồng thời bằng 0 \(\Rightarrow\)x+ y + z \(\ge\)1

Ta có : VT ( 1 ) 

\(\Leftrightarrow\frac{\left(1+x\right)\left(1+y\right)-\left(1+x\right)y}{1+y}+\frac{\left(1+y\right)\left(1+z\right)-\left(1+y\right)z}{1+z}+\frac{\left(1+z\right)\left(1+x\right)-\left(1+z\right)x}{1+z}\)

\(=3+x+y+z-\left[\frac{\left(1+x\right)y}{1+y}+\frac{\left(1+y\right)z}{1+z}+\frac{\left(1+z\right)x}{1+x}\right]\)

\(\le3+x+y+z-\frac{\left(1+x\right)y+\left(1+y\right)z+\left(1+z\right)x}{1+x+y+z}=3+x+y+z-\frac{x+y+z+xy+yz+xz}{1+x+y+z}\)

\(=3+\frac{x^2+y^2+z^2+xy+yz+xz}{1+x+y+z}\le3+x^2+y^2+z^2\)

Cần chứng minh : \(\frac{x^2+y^2+z^2+xy+yz+xz}{1+x+y+z}\le x^2+y^2+z^2\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2\right)\ge xy+yz+xz\)

Mà \(\left(x+y+z\right)\left(x^2+y^2+z^2\right)\ge1.\left(x^2+y^2+z^2\right)\ge xy+yz+xz\)

suy ra đpcm