Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ap dung hang dang thuc
(a^3+b^3)+(a^3-b^3)=a^3+b^3+a^3-b^3=2a^3 (dpcm)
1/
\(\left(1\right)=\left(a^3+b^3\right)+\left(a^3-b^3\right)=2a^3\)
2/
\(\left(2\right)=a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)
\(\left(2\right)=\left(a+b\right).\left[\left(a^2-2ab+b^2\right)+ab\right]=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
3/
\(\left(3\right)=\left(ac\right)^2+\left(ad\right)^2+\left(bc\right)^2+\left(bd\right)^2\)
\(\left(3\right)=\left[\left(ac\right)^2+2acbd+\left(bd\right)^2\right]+\left[\left(ad\right)^2-2adbc+\left(bc\right)^2\right]\)(do t/c giao hoán trong phép nhân => 2acbd=2adbc)
\(\left(3\right)=\left(ac+bd\right)^2+\left(ad-bc\right)^2\)
a) \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)
=\(a^3+b^3+\left(a^3-b^3\right)\)
=\(a^3+b^3+a^3-b^3\)
=\(2a^3\)
b) \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
=\(\left(a+b\right)\left(a^2-2ab+b^2-ab\right)\)
=\(\left(a+b\right)\left[\left(a^2-2ab+b^2\right)-ab\right]\)
=\(\left(a+b\right)\left[\left(a-b\right)^2-ab\right]\)
a. \(\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)=a^3+b^3+a^3-b^3=2a^3\)
b. \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left(a^2-2ab+b^2+ab\right)=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
Chứng minh rằng:
a) (a+b)(a2 - ab + b2) + (a-b)(a2 + ab + b2) = 2a3
b) a3 + b3 = (a+b)[ (a-b)2 + ab ]
a) \(VT=\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(=a^3+b^3+a^3-b^3=2a^3=VP\)
b) \(VT=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=\left(a+b\right)\left[\left(a^2-2ab+b^2\right)+ab\right]\)
\(=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]=VP\)
\(a,\left(a+b\right)\left(a^2-ab+b^2\right)+\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(=a^3+b^3+a^3-b^3=2a^3\left(ĐPCM\right)\)
\(b,a^3+b^3\)
\(=\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\left(a+b\right)\left(a^2-2ab+b^2+ab\right)\)
\(=\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\left(ĐPCM\right)\)
\(\frac{\left(2-c\right)\left(b-c\right)}{2a+bc}=\frac{\left(a+b\right)\left(b-c\right)}{a\left(a+b+c\right)+bc}=\frac{\left(a+b\right)\left(b-c\right)}{\left(a+b\right)\left(c+a\right)}=\frac{b-c}{c+a}=\frac{b}{c+a}-\frac{c}{c+a}\)
Tương tự, ta có: \(\frac{\left(2-a\right)\left(c-a\right)}{2b+ca}=\frac{c}{a+b}-\frac{a}{a+b};\frac{\left(2-b\right)\left(a-b\right)}{2c+ab}=\frac{a}{b+c}-\frac{b}{b+c}\)
\(\Rightarrow\)\(VT=\left(\frac{a}{b+c}-\frac{a}{a+b}\right)+\left(\frac{b}{c+a}-\frac{b}{b+c}\right)+\left(\frac{c}{a+b}-\frac{c}{c+a}\right)\)
\(=\frac{a\left(a-c\right)}{\left(a+b\right)\left(b+c\right)}+\frac{b\left(b-a\right)}{\left(b+c\right)\left(c+a\right)}+\frac{c\left(c-b\right)}{\left(c+a\right)\left(a+b\right)}\)
\(=\frac{a\left(a-c\right)\left(c+a\right)+b\left(b-a\right)\left(a+b\right)+c\left(c-b\right)\left(b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\frac{\left(a^3+b^3+c^3\right)-\left(a^2b+b^2c+c^2a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{\left(a^3+b^3+c^3\right)-\left(a^3+b^3+c^3\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c=\frac{2}{3}\)
cái bđt \(a^3+b^3+c^3\ge a^2b+b^2c+c^2a\) cô Chi có làm r ib mk gửi link
a)a2+b2+c2+3=2(a+b+c)
=>a2+b2+c2+1+1+1-2a-2b-2c=0
=>(a2-2a+1)+(b2-2b+1)+(c2-2c+1)=0
=>(a-1)2+(b-1)2+(c-1)2=0
=>a-1=b-1=c-1=0 <=>a=b=c=1
-->Đpcm
b)(a+b+c)2=3(ab+ac+bc)
=>a2+b2+c2+2ab+2ac+2bc -3ab-3ac-3bc=0
=>a2+b2+c2-ab-ac-bc=0
=>2a2+2b2+2c2-2ab-2ac-2bc=0
=>(a2- 2ab+b2)+(b2-2bc+c2) + (c2-2ca+a2) = 0
=>(a-b)2+(b-c)2+(c-a)2=0
Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0
=>a-b hoặc b=c hoặc a=c
=>a=b=c
-->Đpcm
c)a2+b2+c2=ab+bc+ca
=>2(a2+b2+c2)=2(ab+bc+ca)
=>2a2+2b2+c2=2ab+2bc+2ca
=>2a2+2b2+c2-2ab-2bc-2ca=0
=>a2+a2+b2+b2+c2+c2-2ab-2bc-2ca=0
=>(a2-2ab+b2)+(b2-2bc+c2)+(a2-2ca+c2)=0
=>(a-b)2+(b-c)2+(a-c)2=0
Hay (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0
=>a-b hoặc b=c hoặc a=c
=>a=b=c
-->Đpcm
a) Vế trái = a2 - 3a + 2 + a2 - 7a + 12 - 2a2 - 5a + 34 = (a2 + a2 - 2a2) + (-3a - 7a - 5a) + 2 + 12 + 34 = -15a + 48 khác vê phải
=> đề sai
b) Vế trái = a3 - b3 - (a3 + b3) = -2b3 = vế phải => đpcm
VT = ( a + b )(a^2 - ab + b^2) + ( a- b)(a^2 + ab + b^2)
= a^3 + b^3 + a^3 - b^3
= 2a^3
=VP
=> ĐPCM