K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016

Lấy M là trung điểm của CD

\(AC^2-AD^2=BC^2-BD^2\)

<=> \(\left(\overrightarrow{AC}-\overrightarrow{AD}\right)\left(\overrightarrow{AC}+\overrightarrow{AD}\right)=\left(\overrightarrow{BC}-\overrightarrow{BD}\right)\left(\overrightarrow{BC}+\overrightarrow{BD}\right)\)

<=> \(2.\overrightarrow{DC}.\overrightarrow{AM}=2.\overrightarrow{DC}.\overrightarrow{BM}\)

<=> \(2.\overrightarrow{DC}.\left(\overrightarrow{AM}-\overrightarrow{BM}\right)=0\)

<=> \(2.\overrightarrow{DC}.\overrightarrow{AB}=0\)

<=> DC vuông góc với AB

21 tháng 2 2016

1/Tìm x biết: (1/2x-1004)^2008 = (1/2x-1004)^2006 
2/Cho tam giác ABC cân tại A. D là 1 điểm nằm trong tam giác, biết góc ADB > góc ADC. Chứng minh: DB<DC
giúp e với

Xét tứ giác ABDC có

AD cắt BC tại trung điểm của mỗi đường

nên ABDC là hình bình hành

Suy ra: vecto AC=vecto BD

không cần đk là a,b,c là số thực cũng được @@

Sử dụng bất đẳng thức phụ \(x^2+y^2\ge2xy\)

chứng minh : \(x^2+y^2\ge2xy< =>\left(x-y\right)^2\ge0\)*đúng*

Áp dụng vào bài toán ta được :

\(2.LHS\ge ab+bc+ca+ab+bc+ca=2\left(ab+bc+ca\right)\)

\(< =>LHS\ge ab+bc+ca\)

Dấu = xảy ra \(< =>a=b=c\)

13 tháng 4 2016

Áp dụng định lí về đường trung tuyến:

OA – 

Thay OA =  , AB = a

AD = BC = b và BD = m => dpcm

22 tháng 7 2018

a) ta có : \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AP}+\overrightarrow{PQ}+\overrightarrow{QB}+\overrightarrow{DP}+\overrightarrow{PQ}+\overrightarrow{QC}\)

\(=2\overrightarrow{PQ}+\left(\overrightarrow{AP}+\overrightarrow{DP}\right)+\left(\overrightarrow{QB}+\overrightarrow{QC}\right)=2\overrightarrow{PQ}\) ..................(1)

\(\overrightarrow{AC}-\overrightarrow{BD}=\overrightarrow{AC}+\overrightarrow{DB}=\overrightarrow{AP}+\overrightarrow{PQ}+\overrightarrow{QC}+\overrightarrow{DP}+\overrightarrow{PQ}+\overrightarrow{QB}\)

\(=2\overrightarrow{PQ}+\left(\overrightarrow{AP}+\overrightarrow{DP}\right)+\left(\overrightarrow{QB}+\overrightarrow{QC}\right)=2\overrightarrow{PQ}\) ..................(2)

từ (1) (2) ta có : \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AC}-\overrightarrow{BD}=2\overrightarrow{PQ}\left(đpcm\right)\)

9 tháng 1 2018

Gọi O là giao điểm của AC va BD

\(AO^2=\dfrac{2\left(a^2+b^2\right)-m^2}{4}\)

\(\dfrac{n^2}{4}=\dfrac{2\left(a^2+b^2\right)-m^2}{4}\)

\(n^2=2\left(a^2+b^2\right)-m^2\)

⇒⇒\(n^2+m^2=2\left(n^2+m^2\right)\)