K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2016

A = 1/2.2 + 1/3.3 + ......+ 1/50.50

A < 1/1.2 + 1/2.3 +......+ 1/49.50

A < 1 - 1/2 + 1/2 - 1/3 +.......+ 1/49 - 1/50

A < 1 - 1/50

A < 49/50 < 1

=> A < 1 (đpcm)

*****k nha

4 tháng 5 2016

Ta có: A=1/2^2+1/3^2+1/4^2+...+1/50^2<1

=> A<1/1.2+1/2.3+1/3.4+........+1/50.51

=>A< ( 1/1+ -1/2+1/2+ -1/3+1/3+ -1/4+1/4+ -1/5+1/5+.....+1/50+ -1/51)

=> A<1/1+ -1/51

=>A<51/51+ -1/51 =50/51<1

2 tháng 5 2016

Ta có: A < \(\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

Lại có: \(\frac{1}{1^2}+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

                                                                                 \(=1+\left(\frac{1}{1}-\frac{1}{50}\right)\)

                                                                                  \(=1+\frac{49}{50}\)

Mà 1+49/50<2 nên A<1+49/50<2

Vậy A<2

17 tháng 5 2016

Đặt A=1/2^2+1/3^2+1/4^2+...+1/50^2

       A<1/1*2+1/2*3+1/3*4+...+1/49*50

       A<1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50

      A<1-1/50<1

Vậy A<1

17 tháng 5 2016

Ta có:\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};...;\frac{1}{50^2}< \frac{1}{49.50}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

mà \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1\left(đpcm\right)\)

20 tháng 4 2017

\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)<1

ta có \(\frac{1}{2^2}\)<\(\frac{1}{1.2}\)

       \(\frac{1}{3^2}\)<\(\frac{1}{2.3}\)

    ..........................

    \(\frac{1}{50^2}\)<\(\frac{1}{49.50}\)

ta được \(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+\(\frac{1}{49.50}\)

          =>1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-...-\(\frac{1}{49}\)+\(\frac{1}{49}\)-\(\frac{1}{50}\)

          =>1-\(\frac{1}{50}\)<1 nên\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)<1

vậy ...........................

3 tháng 9 2017

a>

\(\frac{1}{2^2}+\frac{1}{100^2}\)=1/4+1/10000

ta có 1/4<1/2(vì 2 đề bài muốn chứng minh tổng đó nhỏ 1 thì chúng ta phải xét xem có bao nhiêu lũy thừa hoặc sht thì ta sẽ lấy 1 : cho số số hạng )

1/100^2<1/2

=>A<1

3 tháng 5 2015

Bd2 là bài trong đềhọc kì ở trường tớ 

 

 

 

 

 

A=\(\frac{1}{1^2}\)+\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)

A=1+\(\frac{1}{2^2}\)\(\frac{1}{3^2}\)+...+\(\frac{1}{50^2}\)

A<1+\(\frac{1}{1\cdot2}\)+\(\frac{1}{2\cdot3}\)+...+\(\frac{1}{49\cdot50}\)

A<1+1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{49}\)-\(\frac{1}{50}\)

A<2-\(\frac{1}{50}\)<2

=>A<1(câu 1)

 

 

 

5 tháng 5 2017

A= \(\dfrac{1}{1^2}\)

9 tháng 10 2016

mình chỉ biết câu b thôi:
 

Ta biến đổi vế phải :

1-1/2+1/3-1/4+.....+1/49-1/50

=(1+1/3+1/5+....+1/49)-(1/2+1/4+1/6+.......+1/50)

=(1+1/2+1/3+.....+1/49+1/50)-2(1/2+1/4+1/6+......+1/50)

=(1+1/2+...+1/50)-(1+1/2+1/3+....+1/25)

=1/26+1/27+.......+1/50

Vậy 1/26+1/27+1/28+.....+1/50=1-1/2+1/3-1/4+......+1/49-1/50