K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 7 2018

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n+1\right).\left(2n+3\right)}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{\left(2n+1\right)}-\frac{1}{\left(2n+3\right)}\)

\(1-\frac{1}{\left(2n+3\right)}\)

cách làm này ko biết sai hay đúng nên hãy cẩn thận

19 tháng 7 2018

hơi khó bn ơi

2 tháng 8 2015

Gọi ƯCLN(2n+1;2n^2-1)=d

Ta có: 2n+1 chia hết cho d; 2n2-1 chia hết cho d

=>n(2n+1) chia hết cho d; 2n^2-1 chia hết cho d

=>2n^2+2 chia hết cho d; 2n^2-1 chia hết cho d

=>2n^2+2-2n^2-1 chia hết cho d

hay 1 chia hết cho d hay d=1

nên ƯCLN(2n+1;2n^2-1)=1

Vậy A là ps tối giản với mọi n

14 tháng 7 2016

a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)

=> n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n+1; 2n+3) = 1

=> đpcm

Câu b và c lm tương tự

Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1

15 tháng 7 2016

a) Gọi d = ƯCLN(n+1; 2n+3) (d thuộc N*)

=> n + 1 chia hết cho d; 2n + 3 chia hết cho d

=> 2.(n + 1) chia hết cho d; 2n + 3 chia hết cho d

=> 2n + 2 chia hết cho d; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 2n + 3 - 2n - 2 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(n+1; 2n+3) = 1

=> đpcm

Câu b và c lm tương tự

Chú ý: Câu b sẽ ra 2 chia hết cho d => d thuộc {1 ; 2} nhưng do 2n+3 lẻ => d = 1

5 tháng 3 2019

bn lên ngạng hoặc và xem câu hỏi tương tự nha!

Nhớ k mk đấy nha!

thanks nhìu!

OK..OK..OK

5 tháng 3 2019

\(C=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(2C=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)

Ta có : 

\(\frac{2}{1.3}=1-\frac{1}{3}\)

\(\frac{2}{3.5}=\frac{1}{3}-\frac{1}{5}\)

...............................

\(\frac{2}{\left(2n-1\right)\left(2n+1\right)}=\frac{1}{2n-1}-\frac{1}{2n+1}\)

\(\Rightarrow2C=1-\frac{1}{2n+1}=\frac{2n}{2n+1}\)

\(\Rightarrow C=\frac{n}{2n+1}\)

13 tháng 8 2020

\(S=\frac{1.3}{3.5}+\frac{2.4}{5.7}+\frac{3.5}{7.9}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}+...+\frac{1002.1004}{2005.2007}\)

\(\Rightarrow S=\frac{\left(2-1\right)\left(2+1\right)}{\left(2.2-1\right)\left(2.2+1\right)}+\frac{\left(3-1\right)\left(3+1\right)}{\left(3.2-1\right)\left(3.2+1\right)}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}\)

\(+..+\frac{\left(1003-1\right)\left(1003+1\right)}{\left(1003.2-1\right)\left(1003.2+1\right)}\)

\(\Rightarrow S=\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}\right)+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{3.2-1}-\frac{1}{3.2+1}\right)+...\)

\(+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)+...+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{1003.2-1}-\frac{1}{1003.2+1}\right)\)

\(\Rightarrow S=1002.\frac{1}{4}-1002.\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}+\frac{1}{3.2-1}-...-\frac{1}{1003.2+1}\right)\)

\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2005}-\frac{1}{2007}\right)\)

\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{2007}\right)\)

\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}.\frac{668}{2007}\)

\(\Rightarrow S=\frac{501}{2}-\frac{27889}{223}\)

\(\Rightarrow S=125,4372197\)

\(\)

4 tháng 4 2021

thx  you

26 tháng 12 2018

a) Đặt B= 1/1.3 + 1/3.5 + 1/5.7 + .....+ 1/19.21

Ta có: 2B= 2/1.3 + 2/3.5 + 2/5.7 + ....+ 2/19.21

= 1- 1/3 + 1/3-1/5 + 1/5-1/7 +....+ 1/19-1/21

= 1-1/21 = 20/21

=> B= 20/21 : 2 => B= 10/21

b) Như trên, ta có: 2A= 1- (1/2n + 1) => A=( 1-1/2n+1).1/2

=> A= 1/2- 1/2n+1

=> A< 1/2 ( đpcm )

26 tháng 12 2018

ấy chết

A= 1/2 - 1/2.(2n+1) nha bạn

6 tháng 8 2017

2n+1/4n+1

Gọi d là ƯC của 2n+1 và 4n+1

=> d=2n+1 :4n+1

=> (2n+1: 4n+1 ): d

=>[ 2.(2n+1)-1.(4n+1)]

=>4n+2-4n-1

=>d=1

Vậy phân số trên là phân số tối giản