K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 5 2018

\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2018^2}< \dfrac{1}{2.3}+\dfrac{1}{3.4}+....+\dfrac{1}{2018.2019}\)

=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2018}-\dfrac{1}{2019}\)

\(=\dfrac{1}{2}-\dfrac{1}{2019}< 1\)

Vậy A < 1.

4 tháng 3 2018

a) ĐKXĐ: \(x\ne\pm2\)

Ta có: \(\dfrac{x}{x+2}=\dfrac{x^2+4}{x^2-4}\)

\(\Leftrightarrow\dfrac{x}{x+2}=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2+4}{\left(x+2\right)\left(x-2\right)}\)

\(\Rightarrow x\left(x-2\right)=x^2+4\)

\(\Leftrightarrow x^2-2x=x^2+4\)

\(\Leftrightarrow-2x=4\Leftrightarrow x=-2\)(KTMĐK)

Vậy phương trình vô nghiệm

4 tháng 3 2018

b) ĐKXĐ: \(x\ne3;x\ne-1\)

Ta có: \(\dfrac{x}{2x-6}+\dfrac{x}{2x+2}+\dfrac{2x}{\left(x+1\right)\left(3-x\right)}=0\)

\(\Leftrightarrow\dfrac{x}{2\left(x-3\right)}+\dfrac{x}{2\left(x+1\right)}-\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\dfrac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\dfrac{x\left(x-3\right)}{2\left(x+1\right)\left(x-3\right)}-\dfrac{2.2x}{2\left(x+1\right)\left(x-3\right)}=0\)

\(\Rightarrow x\left(x+1\right)+x\left(x-3\right)-2.2x=0\)

\(\Leftrightarrow x^2+x+x^2-3x-4x=0\)

\(\Leftrightarrow2x^2-6x=0\)

\(\Leftrightarrow2x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(TMĐK\right)\\x=3\left(KTMĐK\right)\end{matrix}\right.\)

Vậy phương trình có nghiệm là \(x=0\)

22 tháng 11 2018

a) Đặt \(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{\left(2n\right)^2}\)

\(A=\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)\)

Ta có:

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}\)

\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1-\dfrac{1}{n}+1\)

\(\Rightarrow1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 2-\dfrac{1}{n}\)

\(\Rightarrow\dfrac{1}{2^2}\left(1+\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}\right)< \dfrac{1}{2^2}\left(2-\dfrac{1}{2}\right)\)

\(\Rightarrow A< \dfrac{1}{2^2}.2-\dfrac{1}{2^2}.\dfrac{1}{2}\)

\(\Rightarrow A< \dfrac{1}{2}-\dfrac{1}{2^3}< \dfrac{1}{2}\)

Vậy \(A< \dfrac{1}{2}\left(Đpcm\right)\)

b) Đặt \(B=\dfrac{1}{3^2}+\dfrac{1}{5^2}+\dfrac{1}{7^2}+...+\dfrac{1}{\left(2n+1\right)^2}\)

Ta có:

\(B< \dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(B< \dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\right)\)

\(B< \dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right)\)

\(B< \dfrac{1}{2}\left(1-\dfrac{1}{2n+1}\right)\)

\(B< \dfrac{1}{2}\left(\dfrac{2n+1}{2n+1}-\dfrac{1}{2n+1}\right)\)

\(B< \dfrac{1}{2}.\dfrac{2n}{2n+1}\)

\(B< \dfrac{2n}{4n+2}\)

\(B< \dfrac{2n}{2\left(2n+1\right)}\)

\(B< \dfrac{n}{2n+1}\)

26 tháng 2 2018

bài này đúng là thị của phi...vô của lí ... :))

12 tháng 3 2018

\(\frac{3^2-1}{5^2-1}.\frac{7^2-1}{9^2-1}......\frac{2015^2-1}{2017^2-1}.\frac{2017^2-1}{2019^2-1}\)  \(\Rightarrow\frac{1}{3}.\frac{3}{5}......\frac{1007}{1009}.\frac{504}{505}\)=\(\frac{504}{505}\)

                                                                                           

a: \(=\dfrac{4a^2-3a+5}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{\left(2a-1\right)\left(a-1\right)}{\left(a-1\right)\left(a^2+a+1\right)}-\dfrac{6a^2+6a+1}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\dfrac{4a^2-3a+5+2a^2-3a+1-6a^2-6a-6}{\left(a-1\right)\left(a^2+a+1\right)}\)

\(=\dfrac{-12a}{\left(a-1\right)\left(a^2+a+1\right)}\)

b: \(=\dfrac{5}{a+1}+\dfrac{10}{a^2-a+1}-\dfrac{15}{\left(a+1\right)\left(a^2-a+1\right)}\)

\(=\dfrac{5a^2-5a+5+10a+10-15}{\left(a+1\right)\left(a^2-a+1\right)}\)

\(=\dfrac{5a^2+5a}{\left(a+1\right)\left(a^2-a+1\right)}=\dfrac{5a}{a^2-a+1}\)