K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2016

gọi d là ƯCLN của 6n+2 và 2n+1

=> 6n+2 chia hết cho d và 2n+1 chia hết cho d

=>6n+2 chia hết cho d và 3(2n+1) = 6n+3 chia hết cho d

=>(6n+3) - (6n+2) chia hết cho d

=> 6n+ 3 - 6n -2 chia hết cho d=>1 chia hết cho d => d = 1

=> ƯCLN(6n+2;2n+1) = 1=>6n+2/2n+1 là phân số tối giản => đpcm

24 tháng 2 2020

Gọi d là ước số chung lớn nhất của 2n+1 và 6n+5

2n+1 chia hết cho d => 3(2n+1) chia hết cho d => 6n+3 chia hết cho d

Mà 6n+5 chia hết cho d

=> (6n+5) - (6n+3) chia hết cho d

=> 2 chia hết cho d

=> d thuộc tập 1; 2

Mà n nguyên => 2n+1 lẻ => d không thể là 2

=> d = 1

=> 2n+1 và 6n+5 nguyên tố cùng nhau, hay phân số 2n+1 / 6n+5 luôn tối giản

24 tháng 2 2020

Gọi ƯCLN(2n+1;6n+5) là d \(d\inℕ^∗\))

\(\Rightarrow\hept{\begin{cases}2n+1⋮d\\6n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}6n+3⋮d\\6n+5⋮d\end{cases}\Rightarrow}6n+5-6n-3⋮d\Rightarrow2⋮d}\)

\(\Rightarrow d\in\left\{1;2\right\}\)

=> Phân số \(\frac{2n+1}{6n+5}\)không là phân số tối giản
Ps: Bạn xem lại đề nhé!

21 tháng 10 2015

vào câu hỏi tương tự  dựa theo cách lm  để giải nhé 

\(\frac{2n+1}{3n+2}\)

Gọi \(d\inƯC\left(2n+1;3n+2\right)\)

Ta có : \(2\left(3n+2\right)-3\left(2n+1\right)⋮d\)

\(\Leftrightarrow6n+4-6n+3⋮d\)

\(\Leftrightarrow1⋮d\Rightarrow d=\pm1\)

\(\frac{4n+1}{6n+1}\)

Gọi \(d\inƯC\left(4n+1;6n+1\right)\)

Ta có :

\(3\left(4n+1\right)-2\left(6n+1\right)⋮d\)

\(\Leftrightarrow12n+3-12n+2⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=\pm1\)

2 tháng 8 2015

a, Gọi ƯCLN(15n+1; 30n+1) là d. Ta có:

15n+1 chia hết cho d => 2(15n+1) chia hết cho d => 30n+2 chia hết cho d

30n+1 chia hết cho d

=> 30n+2-(30n+1) chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> ƯCLN(15n+1; 30n+1) = 1

=> \(\frac{15n+1}{30n+1}\)tối giản (Đpcm)

Các phần sau tương tự

Để chứng minh phân số tối giản, ta đặt ƯCLN của tử số và mẫu số là d

Từ đề bài ta có :  \(2n+2⋮d\) và \(2n+1⋮d\)

\(\Rightarrow\left(2n+2\right)-\left(2n+1\right)⋮d\Leftrightarrow\left(2n+2-2n-1\right)⋮d\)

\(\Leftrightarrow\left(2n-2n\right)+\left(2-1\right)⋮d\Leftrightarrow\left(0+1\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vì ƯCLN của tử số và mẫu số là 1 nên hai số nguyên tố cùng nhau.

Hay \(\frac{2n+2}{2n+1}\) là phân số tối giản