Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có A = 22 + 23 + 24 + ... + 220
2A = 23 + 24 + 25 + ... + 221
2A - A = ( 23 + 24 + 25 + ... + 221 ) - ( 22 + 23 + 24 + ... + 220 )
⇒ A + 4 = 221 - 22 + 4 = 221 - 4 + 4 = ( 24 )5 . 2 = ( ...6 )5 . 2 = ( ...6 ) . 2 = ( ...2 )
Vì không có số chính phương nào có tận cùng là chữ số 2 nên A + 4 không phải là số chính phương
2A=23+24+...+221
2A-A=221-22
A=221-22
221-22=(24)5.2-4=(..........6).2-4=(..............2)-4=..............8
Vì có chữ số tận cùng là 8 nên ko phải là số chính phương
tick nha
A=3+3^2+3^3+...+3^20+3^30.
3A=3^2+3^3+3^4+...+3^21+3^31
2A=3^31-3SUY RA a khong phai la so chinh phuong
Ta có A chia hết cho 3
Nếu A là số chính phương thì A chia hết cho 32.Mà A ko chia hết cho 32=>A ko là số chính phương
\(A=2^2+2^3+2^4+....+2^{20}\)
\(\Rightarrow2A=2^3+2^4+2^5+...+2^{21}\)
\(\Rightarrow2A-A=\left(2^3+2^4+2^5+...+2^{21}\right)-\left(2^2+2^3+2^4+....+2^{20}\right)\)
\(\Rightarrow A=2^{21}-2^2\)
\(\Rightarrow A+4=2^{21}-4+4\)
\(\Rightarrow A+4=2^{21}=\left(2^{10}\right)^2.2\)
Lại có: \(\left(2^{10}\right)^2\) là số chính phương, nhưng \(2\)không là số chính phương. Nên: \(\left(2^{10}\right)^2\) không là số chính phương
Vậy: \(A+4\) không là số chính phương.
a) Xét các số có các chữ số tận cùng lần lượt là 0 ; 1 ; 2 ; 3 ; ... ; 9 và lấy các con số cụ thể là 0 ; 1 ; 2 ; .... ; 9
Ta có :
02 = 0
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
Qua đó ta thấy 1 số chính phương không thể có chữ số tận cùng là 2 ; 3 ; 7 và 8
b) Vì 1262 có chữ số tận cùng là 6
=> 1262 + 1 có chữ số tận cùng là 7 ( không phải số chính phương )
Ta có 10012 có chữ số tận cùng là 1
=> 10012 - 3 có chữ số tận cùng là 8 ( không phải số chính phương )
Ta có 112 và 113 đều có chữ số tận cùng là 1
=> 11 + 112 + 113 có chữ số tận cùng là 3 ( không là số chính phương )
Ta có 1010 có chữ số tận cùng là 0
=> 1010 + 7 có chữ số tận cùng là 7 ( không à số chính phương )
Ta có 5151 có chữ số tận cùng là 1
=> 5151 + 1 có chữ số tận cùng là 2 ( không là số chính phương )
Lời giải:
$A=1+3+3^2+(3^3+3^4+3^5+3^6)+.....+(3^{87}+3^{88}+3^{89}+3^{90}$
$=13+3^3(1+3+3^2+3^3)+....+3^{87}(1+3+3^2+3^3)$
$=13+(1+3+3^2+3^3)(3^3+....+3^{87})$
$=13+40(3^3+....+3^{87})=3+10+40(3^3+...+3^{87})$ chia $5$ dư $3$
$\Rightarrow A$ không là scp.
Vì 2\(⋮̸\)4
2\(^2\)\(⋮\)4
2\(^{^{ }3⋮}\)4
\(\Rightarrow\)A ko phải là số chính phương (vì Số chính phương chia hết cho số nguyên tố p thì chia hết cho p2)
Vì 2⋮̸4
2\(^2\)\(⋮\)4
2\(^3\)\(⋮\)4
\(\Rightarrow\)A không phải là số chính phương (vì Số chính phương chia hết cho số nguyên tố p thì sẽ chia hết cho p\(^2\))