Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(x^2+xy+y^2+1=x^2+\dfrac{1}{2}xy+\dfrac{1}{2}xy+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)
\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\)
Với mọi giá trị của \(x;y\in R\) ta có:
\(\left(x^2+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2\ge0\)
\(\Rightarrow\left(x^2+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1\ge1\)
Vậy............
b, \(5x^2+10y^2-6xy-4x-2y+3\)
\(=x^2-6xy+9y^2+4x^2-4x+1+y^2-2y+1+1\)
\(=x^2-3xy-3xy+9y^2+4x^2-2x-2x+1+y^2-y-y+1+1\)
\(=x\left(x-3y\right)-3y\left(x-3y\right)+2x\left(2x-1\right)-\left(2x-1\right)+y\left(y-1\right)-\left(y-1\right)+1\)
\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\)
Với mọi giá trị của \(x;y\in R\) ta có:
\(\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2\ge0\)
\(\Rightarrow\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)
Vậy..............
Chúc bạn học tốt!!!
Lời giải:
\(A=x^2-3x+3=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\geq 0+\frac{3}{4}\Leftrightarrow A\geq \frac{3}{4}>0\)
Do đó ta có đpcm.
\(B=x^2-2x+9y^2-y+3\)
\(\Leftrightarrow B=(x^2-2x+1)+(9y^2-y+\frac{1}{36})+\frac{71}{36}\)
\(\Leftrightarrow B=(x-1)^2+\left(3y-\frac{1}{6}\right)^2+\frac{71}{36}\geq 0+0+\frac{71}{36}\)
\(\Leftrightarrow B\geq \frac{71}{36}>0\) (đpcm)
a, x^2 + xy + y^2 + 1
= (x+y/4) ^2 + 3/4.y^2 + 1 >= 1 > 0
a)
\(x^2+xy+y^2+1=\left(x^2+2x\times\frac{y}{2}+\left(\frac{y}{2}\right)^2\right)+\frac{3y^2}{4}+1\)
\(=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge0+0+1=1\)
mà\(1>0\Rightarrow x^2+xy+y^2+1>0\)với mọi \(x\)và\(y\)
b)
\(x^2+5y^2+2x-4xy-10y+14\)
\(=\left[x^2+2x\left(1-2y\right)+\left(1-2y\right)^2\right]+y^2-6y+13\)
\(=\left(x+1-2y\right)^2+\left(y^2-2y\times3+9\right)+4\)
\(=\left(x+1-2y\right)^2+\left(y-3\right)^2+4\)
Ta có:\(\left(x+1-2y\right)^2\ge0\)với mọi \(x;y\in R\)
và\(\left(y-3\right)^2\ge0\)với mọi \(x;y\in R\)
\(\Rightarrow\left(x+1-2y\right)^2+\left(y-3\right)^2+4\ge4\)với mọi \(x;y\in R\)
\(\Rightarrow x^2+5y^2+2x-4xy-10y+14>0\)
c)
\(5x^2+10y^2-6xy-4x-2y+3=x^2+4x^2+y^2+9y^2-6xy-4x-2y+3\)
\(=\left[\left(2x\right)^2-2\times2x+1\right]+\left(y^2-2y+1\right)+\left[\left(3y\right)^2-2\times3y+x^2\right]+1\)
\(=\left(2x+1\right)^2+\left(y-1\right)^2+\left(3y-x\right)^2+1\)
Ta có \(\left(2x+1\right)^2\ge0\)với mọi \(x\)
\(\left(y-1\right)^2\ge\)với mọi \(y\)
\(\left(3y-x\right)^2\ge0\)với mọi \(x;y\)
và \(1>0\)
\(\Rightarrow5x^2+10y^2-6xy-4x-2y+3>0\)
a. \(x^2+xy+y^2+1=\left(x^2+xy+\frac{1}{4}y^2\right)+\frac{3}{4}y^2+1=\left(x+\frac{1}{4}y\right)^2+\frac{3}{4}y^2+1>0\forall x;y\)(đpcm)
b. \(x^2+5y^2+2x-4xy-10y+14\)
\(=\left[\left(x^2-4xy+4y^2\right)+\left(2x-4y\right)+1\right]+\left(y^2-6y+9\right)+4\)
\(=\left[\left(x-2y\right)^2-2\left(x-2y\right)+1\right]+\left(y^2-6y+9\right)+4\)
\(=\left(x-2y-1\right)^2+\left(y-3\right)^2+4>0\forall x;y\)(đpcm)
c. tương tự ý b
\(A=2x^2-6xy+9y^2-12x+2017\)
\(A=x^2+x^2-6xy+\left(3y\right)^2-12x+2014\)
\(A=\left(x^2-2\cdot x\cdot6+6^2\right)+\left[\left(3y\right)^2-2\cdot3y\cdot x+x^2\right]+1978\)
\(A=\left(x-6\right)^2+\left(3y-x\right)^2+1978\ge1978>0\forall x;y\)
P.s: 1978 năm sinh me t :)
Cám ơn bạn nhiều