Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 2012 chia cho 3 dư 2 => 2012^2 chia cko 3 dư 4
2013 chia cko 3 dư 0 => 2013^2 chia cko 3 dư 0
=> 2012^2x2013^2 chia cko 3 dư 0
=> A = 2012^2 + 2012^2x2013^2 + 2013^2 chia cko 3 dư 4 mak 4 chia 3 dư 1 suy ra A chia cko 3 dư 1
Mà số chính phương khi chia cko 3 chỉ có thể có số dư là 0 hoặc 1
Vậy A là số chính phương
Chỗ nào hong hiểu bn hỏi mk nhea =))
a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014
=> (k – n)(k + n) = 2014 (*)
Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.
Mặt khác (k – n)(k + n) = 2014 là chẵn
Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4
Mà 2014 không chia hết cho 4
Suy ra đẳng thức (*) không thể xảy ra.
Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương
b) Với 2 số a, b dương:
Xét: a2 + b2 – ab ≤ 1
<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)
<=> a3 + b3 ≤ a + b
<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)
<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6
<=> 2a3b3 ≤ ab5 + a5b
<=> ab(a4 – 2a2b2 + b4) ≥ 0
<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .
Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5
1) 1
2)Ta có: 2011 x 2013 + 2012 x 2014 =8100311
20122 + 20132 - 2 =8100311 .
Vậy ta đã thấy 2 số bằng nhau
Kết luận : 2011 x 2013 + 2012 x 2014 = 20122+ 20132 - 2
1, \(B=3^{24}-\left(27^4+1\right)\left(9^6-1\right)\)
\(=\left(3^{12}\right)^2-\left(3^{12}+1\right)\left(3^{13}-1\right)\)
\(=\left(3^{12}\right)^2-\left[\left(3^{12}\right)^2-1\right]\)
\(=\left(3^{12}\right)^2-\left(3^{12}\right)^2+1\)
\(=1\)
Vậy \(B=1\)
b: \(=\dfrac{2014\cdot2015^2+2014\cdot2016-2016\cdot2015^2+2016\cdot2014}{2014\cdot2013^2-2014\cdot2012-2012\cdot2013^2-2012\cdot2014}\)
\(=\dfrac{2015^2\cdot\left(-2\right)+2\cdot\left(2015^2-1\right)}{2013^2\cdot\left(-2\right)-2\cdot\left(2013^2-1\right)}\)
\(=\dfrac{\left(-2\right)\cdot\left(2015^2-2015^2+1\right)}{\left(-2\right)\cdot\left(2013^2+2013^2-1\right)}=\dfrac{1}{2\cdot2013^2}\)
a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014
→ (k – n)(k + n) = 2014 (*)
Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.
Mặt khác (k – n)(k + n) = 2014 là chẵn
Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4
Mà 2014 không chia hết cho 4
Suy ra đẳng thức (*) không thể xảy ra.
Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương
b) Với 2 số a, b dương:
Xét: a2 + b2 – ab ≤ 1
↔ (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)
↔a3 + b3 ≤ a + b
↔ (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)
↔ a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6
↔ 2a3b3 ≤ ab5 + a5b
↔ ab(a4 – 2a2b2 + b4) ≥ 0
↔ ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .
Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5
a)Giả sử n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2
=> k2 – n2 = 2014
=> (k – n)(k + n) = 2014 (1)
Mà (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.
Mặt khác (k – n)(k + n) = 2014 là chẵn
Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4
Mà 2014 không chia hết cho 4
Suy ra đẳng thức (1) không thể xảy ra.
Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương
b) Ta có : 2 số a, b dương:
Xét: a2 + b2 – ab ≤ 1
<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)
<=>a3 + b3 ≤ a + b
<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)
<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6
<=> 2a3b3 ≤ ab5 + a5b
<=> ab(a4 – 2a2b2 + b4) ≥ 0
<=> ab(a2 - b2) ≥ 0 đúng với mọi a, b > 0 .
Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5