K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2023

Đặt : 

=

2

1

3

+

2

3

5

+

2

5

7

+

.

.

.

+

2

99

101

A= 

1⋅3

2

 

 + 

3⋅5

2

 

 + 

5⋅7

2

 

 +...+ 

99⋅101

2

 

 

 

2

1

3

=

2

3

5

+

2

5

7

+

.

.

.

+

2

99

101

A− 

1⋅3

2

 

 = 

3⋅5

2

 

 + 

5⋅7

2

 

 +...+ 

99⋅101

2

 

 

 

2

2

1

3

=

2

3

2

5

+

2

5

2

7

+

2

7

.

.

.

+

2

99

2

101

2A− 

1⋅3

2

 

 = 

3

2

 

 − 

5

2

 

 + 

5

2

 

 − 

7

2

 

 + 

7

2

 

 −...+ 

99

2

 

 − 

101

2

 

 

 

2

2

3

=

2

3

2

101

2A− 

3

2

 

 =

Đặt : 

=

2

1

3

+

2

3

5

+

2

5

7

+

.

.

.

+

2

99

101

A= 

1⋅3

2

 

 + 

3⋅5

2

 

 + 

5⋅7

2

 

 +...+ 

99⋅101

2

 

 

 

2

1

3

=

2

3

5

+

2

5

7

+

.

.

.

+

2

99

101

A− 

1⋅3

2

 

 = 

3⋅5

2

 

 + 

5⋅7

2

 

 +...+ 

99⋅101

2

 

 

 

2

2

1

3

=

2

3

2

5

+

2

5

2

7

+

2

7

.

.

.

+

2

99

2

101

2A− 

1⋅3

2

 

 = 

3

2

 

 − 

5

2

 

 + 

5

2

 

 − 

7

2

 

 + 

7

2

 

 −...+ 

99

2

 

 − 

101

2

 

 

 

2

2

3

=

2

3

2

101

2A− 

3

2

 

 =

 

3

2

 

 − 

101

2

 

 

 

2

2

3

=

196

303

2A− 

3

2

 

 = 

303

196

 

 

 

2

3

=

98

303

A− 

3

2

 

 = 

303

98

 

 

 

=

98

303

+

2

3

=

100

101

A= 

303

98

 

 + 

3

2

 

 = 

101

100

 

3

2

 

 − 

101

2

 

 

 

2

2

3

=

196

303

2A− 

3

2

 

 = 

303

196

 

 

 

2

3

=

98

303

A− 

3

2

 

 = 

303

98

 

 

 

=

98

303

+

2

3

=

100

101

A= 

303

98

 

 + 

3

2

 

 = 

101

100

 

30 tháng 9 2020

A = 2 + 22 + ... + 2120

Chứng minh chia hết cho 3

A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 2119 + 2120 )

= 2( 1 + 2 ) + 23( 1 + 2 ) + ... + 2119( 1 + 2 )

= 2.3 + 23.3 + ... + 2119.3

= 3( 2 + 23 + ... + 2119 ) chia hết cho 3 ( đpcm )

Chứng minh chia hết cho 7

A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 2118 + 2119 + 2120 )

= 2( 1 + 2 + 22 ) + 24( 1 + 2 + 22 ) + ... + 2118( 1 + 2 + 22 )

= 2.7 + 24.7 + ... + 2118.7

= 7( 2 + 24 + ... + 2118 ) chia hết cho 7 ( đpcm )

Chứng minh chia hết cho 15

A = ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + ... + ( 2117 + 2118 + 2119 + 2120 )

= 2( 1 + 2 + 22 + 23 ) + 25( 1 + 2 + 22 + 23 ) + ... + 2117( 1 + 2 + 22 + 23 )

= 2.15 + 25.15 + ... + 2117.15

= 15( 2 + 25 + ... + 2117 ) chia hết cho 15 ( đpcm )

30 tháng 9 2020

1) Ta có: \(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{119}+2^{120}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{119}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{119}\right)\) chia hết cho 3

2) Ta có: \(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{118}\left(1+2+2^2\right)\)

\(A=7\left(2+2^4+...+2^{118}\right)\) chia hết cho 7

3) Ta có: \(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(A=2\left(1+2+2^2+2^3\right)+...+2^{117}\left(1+2+2^2+2^3\right)\)

\(A=15\left(2+2^5+...+2^{117}\right)\) chia hết cho 15

\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)

\(=57\left(7+7^4+...+7^{118}\right)⋮57\)

8 tháng 3 2022

\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)

\(=57\left(7+...+7^{118}\right)⋮57\)

1 tháng 11 2015

\(A=1+4+4^2+...+4^{99}\)

\(A=\left(1+4+4^2+4^3\right)+\left(4^4+4^5+4^6+4^7\right)+...+\left(4^{96}+4^{97}+4^{98}+4^{99}\right)\)

\(A=85+4^7\left(1+4+4^2+4^3\right)...+4^{96}\left(1+4+4^2+4^3\right)\)

\(A=85+4^7.85+...+4^{96}.85\)

\(A=85.\left(1+4^7+...+4^{96}\right)\)

Vì 85 chia hết cho 17 nên A chia hết cho 17

 

 

20 tháng 3 2017

S  = 17 . [ \(1+17+17^2\)] + \(17^3\left[1+17+17^2\right]\)+.......+\(^{17^5\left[1+17+17^3\right]}\)

S = 17 . 307 + 17^3 . 307 +....+ 17^5 .307

S= 307[ 17+17^3 +...+17^5] => S chia hết cho 307 

20 tháng 3 2017

Có tất cả số hạng ở biểu thức S là:

(18-1):1+1=18(số)

Vì 18 chia hết cho 3 nên ta chia biểu thức S làm 6 nhóm mỗi nhóm có 3 số hạng

S=17+17^2+17^3+.......+17^18

S=(17+17^2+17^3)+.......+(17^16+17^17+17^18)

S=17.(1+17+17^2)+........+17^16.(1+17+17^2)

S=17.307+.............+17^16.307

S=307.(17+........+17^16) chia hết cho 307

Vậy S chia hết cho 307

~shizadon~

11 tháng 5 2021

$3^{x+1}+3^{x+2}+..........+3^{x+100}\\=3^x(3+3^2+.........+3^{100}$ 
Vì $3 \to 3^{100}$ có 100 số nên ta ghép 4 số vào 1 cặp
$\to 3^{x+1}+3^{x+2}+..........+3^{x+100}\\=3^x[(3+3^2+3^3+3^4)+......+3^{97}+3^{98}+3^{99}+3^{100}\\=3^x[120+...+3^{96}.120] \vdots 120(đpcm)$